Software

Visualization

Wesley Coelho

CPSC 533C
March 29, 2004

"
Visualizations for Software
Engineering

m Visualizations for the following engineering tasks
are reviewed:

Optimization

Testing

Monitoring deployed software
m Common themes

Overview + detail views

Source code is abstracted with SeeSoft views (Eick,
Steffen and Sumner, 1992)

" A
Reviewed Papers

m Visualizing Application Behavior on Superscalar
Processors (Stolte, Bosch, Hanrahan and
Rosenblum, 1999)

m Technical Note: Visually Encoding Program Test
Information to Find Faults in Software (Eagan,
Harrold, Jones and Stasko, 2001)

m Visualization of Program-Execution Data for
Deployed Software (Orso, Jones and Harrold,
2003)

" A
Introduction

m Goal: Visualize program instruction execution on
a superscalar processor
m Superscalar processors
Can execute more than one instruction per cycle
Instructions can be executed out-of-order
Some instructions depend on the results of other
Instructions

m Program source code structure can be modified

to increase instruction-level parallelism for better
performance

" I
Why Visualize?

m Software developers rarely attempt such
optimizations
Individual instructions need to be investigated

Millions of instructions are executed per
second

Programmers work with source code, not
instructions

Sample Dataset

PC:
PC:
PC:
pPC:
PC:
PC:
PC:
PC:
PC:
PC:
PC:
PC:
pPC:
PC:
PC:
PC:
PC:
PC:

401eb8
401ecO
401£d8
401feO0
401fe8
401£f£0
401f£8
402000
402008
402010
402018
402020
402048
402050
402058
402060
402068
402070

IHI:
IHI:
IHI:
:4d
IHI:
:36
:15
176
:36
:6a
: 37
IHI:
:36
IHI:
: 37
:36
:36
IHI:

IHI

IHI
IHI
IHI
IHI
IHI
IHI

IHI

IHI

IHI
IHI

4d
3
49

71

C

71

4d

ILO:
ILO:
ILO:
ILO:
ILO:
ILO:
ILO:
ILO:
ILO:
ILO:
ILO:
ILO:
ILO:
ILO:
ILO:
ILO:
ILO:
ILO:

40418
1007f6
40418
4040e
110e5
4010100
100cle8
2060000
600
20000
7007f

8

500
210e5
202bdf0
4020400
6070200
20301

; Sra
7 Jal
;11

; Sra
;lui

; addu
;1.d
;dmtcl
; addu
;c.lt.d
; addiu
;bclft

; addu
;lui

; addiu
; addu

; addu

; Sra

rd,rd, 24
0x401£d8
rd,rd, 24
rd,rd,14
rl,0x10eb5
rl,rd,rl
£f0,-15896 (rl)
ro, £2
ro,r0, r0

£f0, £f2
r/7,r0,127
0x402048
r5,r0,r0
r2,0x10eb5
r2,r2,-16912
rd,rd,r2
r2,r6,r’/
r3,r2,1

" A
Visualization Approach

m Overview + Detail display based on three views

Timeline View
m Overview of application’s execution
= Used to find problems
Pipeline View
m Detailed view of instructions in the pipeline at a particular cycle
» Used to identify a problem

Source Code View
m Relates overview and detail views to lines of source code

'_
Timeline View

We are able to focus the area of interest to The instruction mix chart lets us see what
2000 cycles -- few enough cycles that we @ types of instructions are in the pipeline
can use animation for further investigation. during the time interval of interest.

1 1000000

- Exception/Flush ' pad/Store - Mo Stall - Empty/Icache - Issue/Functional Unit

V

There are periods of increased - _
@ pipeline stall throughout the @ throughput information for the

The overview displays stall and

execution entire execution.

" A
Pipeline View

Dependencies appear as yellow

lines between instructions

If an instruction is speculated,

its border is orange

Feach Bifer

Flaating-Paimt

Integsr
Branch

Load/Store

10

adou aZ,a2, 4 |

il _I Facrder Buffar
[ni=]

oL Ulpdl

cwb.g.w S22, $F22

div.s
madd.s
! L]
:Lt 010078560
TR T
c.le.s
bcif :
Branch | 3dau 3%,5%,1 |

blez v0,0x10008558 |

mow.s $11 2§22
sl at a22
addu at,at,al

| el £10, 4 aly

roens gfn &f1 2

|.
F’__

|_addu
sl v
hcit ow

EEEEN
awll 2
noons&en

Fiaatig Port I—=visez]
e cvtsw SR2ER2 I

addi vl vl al

S}

x
/. et ¢
I C.

5

sll a2, v, 2 bLigid

sl o w2

acdu al,az, al

ngp

c.les

Instructions not yet completed

appear faded in the reorder

buffer

The instruction which must

graduate next is indicated by a
yellow border and red arrow

" N

Source Code View

i = brkPoint - r + 1:
bwvals[r - 1] = 0.0;
for (m = r=-2; = »>= 0;
{
144
if (i < 0)
omega = 0;

owega = (u - kw[i]) / (kw[i + £ - 1] - k& [1i]);
bvals[s + 1] = bvals[s + 1] + (1 - omega) * bvals[s]:
hval=[=] = omega * bvals[=].

elzse

Ir"-.';
T Compute derivatives of the basi= functions= Bi.kiu)’
*f

atatic void
Bagigherivatives(float u, long brkPoint, float * kv,

long k;, float * dvals

‘suoibas indybnoiyl moj ayj ndyBnosyl moj

0} Buipuodsaiios suonangsu) Jujod Guneo)) Alan Yypm auo ‘uolnosaxs jo saseyd

jo sneaje|d a8s pue XiW UoljanJisuUl ayj ul alpoliad s|eanad mala auljawi) syl
saseyd usamiaq uojisues) ay) Joadsu| ap —

I [FURIUr s] [apeaicws [eSoee ysniyuondesy [N
sl
.

2J015/pECT
‘ajoho SIY) WoL) UOHBWIUE HIB)S PUB }S3aIalUl hwum%H n

vans Jo eale s|yj u) ajoho 8)6uis e 109)as o B ikl

O]

fe]Eiean whans - 2]y
Iebamo - 11 + [T + @leTesd = [[+ @]aTeaq
- [F - 3+ Bloal ¢ (715 - B} = wbauo

0 =t ® FZ-3 = Bl 30F
‘g = [T = a]reag
It + 2 - uteLa 1

(AR 0" Iy | g

(ML NEL] [+41 (K => I [7 = I} J0Q

"saguaisjas Alowaw . .
pue suoijanJsu) Jujod Bujleo)} yo selles _ T
e usamiaq salouapuadap Buipeoses aie @ ‘uoneodde
aJay} Jey) smoys maia suljadid sy ay} uiyum dooj Y61y e 0} spuodsalios @
SIY} Jeyl SMOYS MIlA 3POD 32UNO0S ayL

" J
Paper Critique

m Strengths

These techniques are general enough for use in other applications:
Compiler and hardware design, assembly lines, graphics pipelines

Animation could be very useful for understanding pipeline behaviour
Intuitive use of visual cues in timeline view

Self contained — accessible background information about superscalar
processors is included

m Weaknesses
Scalability -- Only one second of instructions can be visualized
Description of animation is deferred to another paper

Somewhat complicated colouring scheme for instructions in pipeline
view, no legend for instruction border colours

Fixed timeline intervals, no explanation for chosen values

No explanation of how mapping from instructions to source lines is
performed, or what input data is required

" A
Reviewed Papers

m Visualizing Application Behavior on Superscalar
Processors (Stolte, Bosch, Hanrahan and
Rosenblum, 1999)

m Technical Note: Visually Encoding Program Test
Information to Find Faults in Software (Eagan,
Harrold, Jones and Stasko, 2001)

m Visualization of Program-Execution Data for
Deployed Software (Orso, Jones and Harrold,
2003)

" A
Tarantula

m A visualization for automated software test
suite results

m Large systems sometimes have thousands
of test cases

m [arantula provides a high-level overview
of how the software functions under
testing

Input Dataset

m [est case results
Test number
Pass or Falil
Lines of code covered during test execution

2 3 12 13 14 15

1 P 1
2 P 1 2 23 24 25 Za 27
20 F 1 2 2 4 5 122 124 125

" A
Visualization Approach

m Overview of test results is shown with an array
of rectangles representing test cases executed
Green rectangles indicate passed tests
Red rectangles indicate failed tests

m Lines representing source-code lines
are coloured to indicate the number of
passed or failed tests that executed

that line

Source-line colouring scheme

m Hue is displayed on a spectrum from red to
yellow to green
More red indicates the statement was executed in a
higher proportion of failed tests
m Brightness indicates the number of tests that
executed the statement
High brightness indicates a high number of tests that
executed the statement passed or failed
m Intuition: Lines that are most likely to be faulty
should be closer to bright rea

delewer

Tarantula

=] :.-_l
File

1 Line: 7254

Jl

L.Wl Mnll‘m |\|

h|||L |||j|h i Ll j|'||. |JI" |||l

||||| ‘. Ml
|l |
_ .IH I

) Default () Discrete = Continuous () Passes (Fails () Mixed

a|-Line #254

EEx
~

i -

ecutions: 32 7 300
Passed: 29 7 297

Failed: 2 / 3

" A
Paper Critique

m Strengths
This is a useful solution to a real problem
Paper explains why several simpler colouring schemes were not used

Flexible interface, i.e. “Discrete Mode” available for a simpler
perspective of the faults

m Weaknesses

Source code window is too small. May be difficult to scroll if code
changes when you mouse over the main view to get to the scrollbar

The name of a file containing a selected source code line is not shown

Colour Legend could include axis labels indicating what bright red or
dark yellow means

Confusing description of the actual meaning of the Hue and Brightness
colouring scheme

Is there a system available for producing the input to this tool?
Scalability — System can only show results for a few files at a time

" A
Reviewed Papers

m Visualizing Application Behavior on Superscalar
Processors (Stolte, Bosch, Hanrahan and
Rosenblum, 1999)

m Technical Note: Visually Encoding Program Test
Information to Find Faults in Software (Eagan,
Harrold, Jones and Stasko, 2001)

m Visualization of Program-Execution Data for
Deployed Software (Orso, Jones and Harrold,
2003)

" A
Motivation and Dataset

m Many software problems arise only when
deployed
m The Gamma tool is capable of collecting
program-execution data
Coverage data
Exception-related information
Profiling information
Memory and CPU usage

m This can produce a vast amount of data when
there are many deployed instances

" A
Gammatella

m Implements a novel approach for visualizing
program-execution data

m Supports continuous monitoring and exploration

m Program-execution data is shown by applying
colour to different levels of program
representation

Statement Level
File Level
System Level

" A
Example Application: Profiling

m Profiling finds code that is executed often

m This is useful for
Finding code to optimize
Determining feature usage
Reducing software bloat

m Colour assignment
Red = statement executed very often
Yellow = statement executed often
Green = statement executed rarely

Statement Level

m Provides detail by showing actual source
code

m Higher levels of are abstraction required

finallyMethod. setNamei
handlers. getFinallyN ame ForCFGStart Offset| finallyStartOffsets[i])):
if { numFinallyBlocks =0) |

finallyMethod. getContaining Ty pei). getProgrami }.addSymbol{ finallyMethod :

" A
File Level

m SeeSoft-style miniature view of source
code

m Relative colours of source code lines still
visible
m Still not suitable for viewing large programs

" A
System Level Treemap

m The system is represented using a treemap of its
package and file structure

m The size of a leaf node is proportional to the
number of lines in the file It represents

m Example:

_ _ Oihject
y] i

lang(30} util70)

System Stack
/\ m Vector

Objecti10) System(20) HashMapidd) Stack{10) Vector{20)

System Level Treemap

m Colour distribution of statements must be
represented in the corresponding treemap
node

m Nodes are coloured in proportion to the
colours of lines in the corresponding file

"
System Level Treemap

m File-node colouring algorithm

Brightness

Hue

Miniature Statement Space is Make the Make the
source- colours divided into width of each height of
code view plotted on discrete bucket each row
the hue- ‘buckets’ proportional proportional
brightness to the number to the number
space of statements of statements

in the row in the node

Execution Bar

1

m An “execution” represents a run of a program
and the corresponding data collected

m Executions are represented as vertical bands on
an execution bar

m Depending on the data being represented, hue
or hue and brightness are used to determine the

colour

m Scrollbars allow an unlimited number of

executions to be displayed

L L]

maan Yy

Pay _

EFIER- 1T =T |

Lizgp ey pla g

Execution

Bar

| MIGmes | am

o b

1

A1 M i s b et by 10

el i e W 0
-L‘ wrl il HJH.. | hullhll bk ”Hnllhl“l' Y [o3r.

P AL e, e, s
i A L B D

.IH'- b T B L

1T
Fame i oa Lne ReclilE of juiasymSymnbel Takde
- e 2 prrw

Srarement level ——=

" A
Filters and Summarizers

m Collected data is recorded as property-
value pairS €.J. jJava.version = 1.4.1_01

m [he executions visualized can be filtered
using statements such as:

(java.version = ‘'1.3.0") and
(os.name = ‘Linux’)

m A ‘'summarizer is a statement that
instructs the system to aggregate
executions with the specified properties

" A
Feasibility Study

m Applied Gamma and Gammatella to JABA (Java
Architecture for Bytecode Analysis)

m 550 Classes, 60KLOC

m [nstrumentation caused a 28% reduction In
performance

m Found many classes that were never used

m Found that JABA failed systematically when
using the Sun JVM v. 1.4.0 on Solaris 2.8

"
Paper Critique

m Strengths
Scales to visualize larger systems than SeeSoft views alone
Solution can be generalized to many forms of analysis
Feasibility study suggests that valuable information can be gained from
the system
m Weaknesses

Feasibility study suggests that instrumentation might be infeasible for
many applications due to performance reduction

May be difficult to explore package structure — need to hover over
package to get tool-tip with package name

Many file name labels are unreadable

Suggested colouring schemes for the execution bar were not explained
Colour mappings used in the feasibility study were not stated

Paper organization: Potential colour mappings not stated until the end

Questions?

(I 1 A T A [

| alRed amgmen an
S ST

TEER Rl [TPRemerere

ile
i+ Default : Discrete @ Continuous (:Passes () Fails (: Mixed 1 Line: 7254
Test: |

~|/Line 7254
Executions: 32 / 300
Passed: 29 7 297
<]l Failed: 2 7 2

