

Dmitry Nekrasovski March 24, 2004

Different maps, same domain

- Visualization methods for interacting with geographic information (MacEachren, 1998)
- Applying cartographic principles to visualization of non-geographic information (Skupin, 2000)

Why cartographic viz?

- Dynamic, interactive visualization of geospatial information
 - F+C, linked highlighting, fluid navigation...
- Spatial visualization of non-geospatial data
 - Cartographic principles

Papers

- Cartographic Perspectives on Information Visualization (Skupin, 2000)
- Where on Earth is the Internet? (Dodge & Shiode, 1998)
- HealthVis (MacEachren et al., 1998)

Map metaphors for non-geo data

- Timeline
 - Late 1800's: Intellectual domains (Otlet)
 - 1980's: Early hypertext systems
 - 1990's: Mapping/spatial metaphors in infoviz
- Cartographic principles rarely applied
 - "Readings in Infoviz": 3 references

Scaling

- "The major usability problem"
- Tradeoffs between:
 - Number of features
 - Size of symbols
 - Size of display area
- Cartographic generalization:
 - Preserve meaning at different scales

Projection

Cartography: 3D->2D

Mercator: angular relationships (directions)

Peters: relative areaInfoviz: nD->2D

• Multi-dimensional scaling (MDS): distance

Self-organizing maps (SOM): topology

Labeling

- Infoviz issues:
 - Space, label positions, label terms
- Cartography
 - Conventions to deal with these issues
 - Coastal cities vs. cities near the coast
 - Labels can add meaning to features
 - Labels can help in evaluating visualizations
 - Terrain visualization with only ridges labeled?

Paper critique

- Strong points:
 - Good overview of related issues/ideas in cartographic research
 - Many basic cartographic references
- Weak points:
 - Few specific guidelines
 - No examples of actual systems
 - When do these ideas not apply?

Papers

- Cartographic Perspectives on Information Visualization (Skupin, 2000)
- Where on Earth is the Internet? (Dodge & Shiode, 1998)
- HealthVis (MacEachren et al., 1998)

Where on Earth is the Internet?

- Internet typically perceived apart from real-world geography
- Map Internet "real estate" onto real geospace
 - Where are domains actually located?
- Possible impacts on cities/areas with high concentration?

Dataset

- Domain registration records
 - Not geographically referenced
 - But contain physical contact information
 - Postal codes extracted, mapped to location
 - Also IP address allocation for each domain
- Entire UK domain registry as of 1997
 - 10,183 records
 - 44 million allocated IP addresses

Visualization 1

- Density surface map
- Dot = record
- No context, low information density

Visualization 2

IP address density, more context

Paper critique

- Strong points
 - Map metaphor for non-geographic data
 - Real-world dataset
- Weak points
 - Accuracy: IP allocation vs. actual use
 - No interaction/navigation/filtering
 - No time component
 - No evaluation

Papers

- Cartographic Perspectives on Information Visualization (Skupin, 2000)
- Where on Earth is the Internet? (Dodge & Shiode, 1998)
- HealthVis (MacEachren et al., 1998)

HealthVis

- Exploratory map-based visualization of variations in health statistics
 - Death rates for various causes, risk factors
- Goal: Spatial and temporal analysis
 - Spatial: easily find regions/clusters
 - Time: compare changes over time
 - Space+time: trends in regions/clusters over time

Evaluation

- Task-based exploration with domain experts
- Results:
 - Spatial tasks easy with linked highlighting
 - Animation good for noticing time trends
 - Space+time trends more difficult

Paper critique

- Strengths:
 - Good analysis of issues in multivariate geographic data exploration
 - Real dataset
 - Detailed qualitative evaluation
- Weaknesses:
 - Dense, some unclear terminology
 - Effectiveness of cross maps?
 - Evaluation focused on task, not system

