High Dimensional Visualization

By Mingyue Tan Mar10, 2004

High Dimensional Data

High-D data:

- ungraspable to a human's mind

What does a 10-D space look like?

We need effective multi-D visualization techniques

Paper Reviewed

- Dimensional Anchors: a Graphic Primitive for Multidimensional Multivariate Information Visualizations,
 P. Hoffman, G. Grinstein, & D. Prinkney, Proc. Workshop on New Paradigms in Information Visualization and Manipulation, Nov. 1999, pp. 9-16.
- <u>Visualizing Multi-dimensional Clusters, Trends, and Outliers using Star Coordinates,</u> Eser Kandogan, Proc. KDD 2001
- StarClass: Interactive Visual Classification Using Star Coordinates , S. Teoh & K. Ma, Proc. SIAM 2003

Dataset

- □ Car
 - contains car specs (eg. mpg, cylinders, weight, acceleration, displacement, type(origin), horsepower, vear. etc)
 - type: American, Japanese, & European

Dimensional Anchors (DA)

Dimensional Anchor:

- Attempt to unify many different multi-var visualizations
- Uses of 9 DA parameters

Base Visualizations

- □ Scatter Plot
- □ Parallel Coordinates
- Survey Plot
- □ Radviz spring visualization

Parallel Coordinates Point -> line (0,1,-1,2)= x y z w

Parameters of DA Nine parameters are selected to describe the graphics properties of each DA: p1: size of the scatter plot points p2: length of the perpendicular lines extending from individual anchorpoints in a scatter plot p3: length of the lines connecting scatter plot points that are associated with the same data point p4: width of the rectangle in a survey plot p5: length of the parallel coordinate lines p6: blocking factor for the parallel coordinate lines p7: size of the radviz plot point p8: length of the "spring" lines extending from individual anchorpoints of a radviz plot p9: the zoom factor for the "spring" constant K

DA layout

- ✓ Parameters Done!
- Layout
 - DAs can be arranged with any arbitrary size, shape or position
 - Permits a large variety of visualization designs

Combinations of Visualizations

- □ Can we combine features of two (or more) visualizations?
 - □ Combination of Parallel Coordinates and Radviz

Visualization Space

- Nine parameters define the size of our visualization space as R⁹
- □ Include the geometry of the DAs, assuming 3 parameters are used to define the geometry
- □ The size of our visualization space is R¹²
- "Grand Tour" through visualization space is
- □ New visualizations can be created during a tour

Evaluation

Strong Points

- © Idea
- Many examples of visualizations with real data

Weak Points

- ⊗ Not accessible
- ⊗ Short explanation of examples
- ☼ Lack of examples for some statement
- ⊗ No implementation details

Where are we

- ✓ Dimensional Anchors
- > Star Coordinates
 - a new interactive multidimensional technique
 - helpful in visualizing multi-dimensional clusters, trends, and outliers
- □ StarClass Interactive Visual Classification Using Star Coordinates

Star Coordinates

- Each dimension shown as an axis
- Data value in each dimension is represented as a vector.
- Data points are scaled to the length of the axis
 - min mapping to origin
- max mapping to the end

Interaction Features

- Scaling
- allows user to change the length of an axis
- increases or decrease the contribution of a data column
- Rotation
- changes the direction of the unit vector of an axis
- makes a particular data column more or less correlated with the other columns
- Marking
- selects individual points or all points within a rectangular area and paints them in color
- makes points easy to follow in the subsequent transformations

Interaction Features

- Range Selection
 - select value ranges on one or more axes, mark and paint them
 - allows users to understand the distribution of particular data value ranges in current layout
- Histogram
 - provides data distribution for each dimension
- □ Footprints
- leave marks of data points on the trail for recent transformations

Applications - Cluster Analysis

- □ Playing with the "cars" dataset
- scaling, rotating, & turning off some coordinates
- □ Four major clusters in the data discovered

Applications - Cluster Analysis

- Scaling the "origin" coordinate moves only the top two clusters
 - (JP & Euro)
- □ Down-scaling the origin
 - these two clusters join one of the other clusters(American-made cars of similar specs)
- □ Result: two clusters

Low weight, displacement, high acceleration cars

officials of the second of the

SC - useful in visualizing clusters

- Within few minutes users can identify how the data is clustered
- Gain an understanding of the basic characteristics of these clusters

Multi-factor Analysis Dataset - "Places" - ratings wrt climate, transportation, housing, education, arts, recreation, crime, health-care, and economics Important desirable factors pulled together in one direction and neg, undesirable factors in the opposite

Evaluation Strong Points © idea © many concrete examples with full explanations Weak points © ugly figures (undistinguishable)

Where we are Vibrary Dimensional Anchors Vibrary Star Coordinates - a new interactive multi-D visualization tech. StarClass - Interactive Visual Classification Using Star Coordinates

Classification

- Each object in a dataset belongs to exactly one class among a set of classes.
- □ Training set data: labeled (class known)
- □ Build model based on training set
- □ Classification: use the model to assign a class to each object in the testing set.

Visual-base DT Construction

- □ Visual Classification
- projecting
- painting
- region can be re-projected
- recursively define a decision tree.
- each project correspond to a node in decision tree
- Majority class at leaf node determines class assignment

(the class with the most number of objects mapping to a terminal region is the "expected class")

Evaluation of the system

Good

- Makes use of human judgment and guides the classification process
- © Good accuracy
- Increase in user's understanding of the data

Bad

expertise required?

Evaluation of the Paper

Good

- © Ideas
- © Accessible
- © Concrete examples

Bad

No implementation discussed

Summary

- □ Dimensional Anchor
 - unify visualization techniques
- □ Star Coordinate
 - new interactive visualization techniques
 - Visualizing clusters and outliers
- □ StarClass
 - interactive classification using star coordinate

Reference

- □ Dimensional Anchors: a Graphic Primitive for Multidimensional Multivariate Information Visualizations, P. Hoffman, G. Grinstein, & D. Prinkney, Proc. Workshop on New Paradigms in Information Visualization and Manipulation, Nov. 1999, pp. 9-16.

 □ Visualizing Multi-dimensional Clusters, Trends, and Outliers using Star Coordinates, Eser Kandogan, Proc. KDD 2001
- □ StarClass: Interactive Visual Classification Using Star Coordinates , S. Teoh & K. Ma, Proc. SIAM 2003 □ http://graphics.cs.ucdavis.edu/~steoh/research/classificat ion/SDM03.ppt