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ABSTRACT 
In the Information Age, data-mining has become a valuable 
tool.  As long as there are needs and benefits from detecting 
and analyzing trends, there will be a need for data-mining.  
Traditionally, an expert in the field is required to search for 
“gems” of information from hunches and intuition.  This 
task is generally tedious and ineffective as existing support 
applications only work to confirm these hunches.  We 
introduce PowersetViewer to empower the user with an 
application that detects, rather than confirms, trends.  By 
taking advantage of human precognitive abilities and 
intuition, we believe that this application will be highly 
scalable to large datasets. 
 
 
1. INTRODUCTION 
In the past, when record keeping and data acquisition were 
in their infancy, searching for trends within datasets was a 
relatively small task.  This task was traditionally small 
enough that it could be completed without the aid of 
complex applications and relied mostly on human intuition. 
 
As data acquisition techniques advanced, datasets began to 
grow exponentially1.  Initially, throwing computing power 
at data-mining applications was sufficient.  The algorithm 
would be pointed in a general direction and it would 
continue to search blindly.  Without the help of human 
intuition, it is possible that the algorithm could get lost or 
search in the wrong direction2.  We needed a way to 
reintegrate the user into the algorithm.  To answer this 
issue, data-mining applications began to incorporate 
artificial intelligence assigned with the responsibility to 
make decisions throughout the algorithm.  However, 
artificial intelligence research is expensive and still relies 
heavily on computing power. 
 
Today, data acquisition techniques are advancing as fast or 
faster than Moore’s law claims we can keep up1.  A 
significant change in the progress of data-mining is 
required to keep up with the advances of data acquisition.  
We believe that by bringing human intuition back into the 

                                                
1 http://bioinfo.weizmann.ac.il/cards/knowledge.html 
2 http://www.it-
analysis.com/researcharchivepdf.php?id=259 

process, we will be able to overcome the computing power 
bottleneck. 
 
2. POWERSETVIEWER 
PowersetViewer is a visualization tool to enumerate and 
display a power set.  More specifically, display the 
interesting sets within a power set.  Interesting sets are 
defined as sets that are either of interest to the user or of 
interest to the data-mining engine.  User-specified 
interesting sets could include sets based on hunches 
(confirmation).  Data-mining specified interesting sets 
could include sets occurring frequently in the dataset 
(detection).  In practical applications, interesting sets are 
scattered sparsely and have relatively low cardinality as 
compared to the size of the dataset’s alphabet.  This is a 
key property of data-mining and was taken into 
consideration throughout the design phase. 
 
We have developed a series of tools to ensure that users 
have all the features traditionally found on data-mining 
applications.  And, combined with several information 
visualization techniques, we believe that PowersetViewer 
will work simultaneously as a detection and confirmation 
data-mining tool. 
 
2.1 Data-mining Engine Driver 
A driving interface is required to allow the user to control 
the data-mining engine throughout the search algorithm.  It 
is unlikely that an expert would be able to successfully 
guess the location of trends.  If this were the case, 
confirmation techniques would suffice.  However, as 
datasets grow the likelihood of knowing where to look 
decreases dramatically.  Therefore, we require trend 
detection techniques or rather, techniques that enable the 
user to detect trends. 
 
To accomplish this, we ensure that information received 
from the data-mining engine is displayed immediately 
(discussed later) so that the user can make decisions as 
soon as the information is made available.  At any time 
during the search, the user can interrupt the data-mining 
engine and tighten or relax constraints.  Should he believe 
that the data-mining engine is thrashing or on a completely 
useless course, a new set of constraints can be supplied. 
 



Currently, we use standard statistical calculations to filter 
the entire dataset.  The user can choose from various 
aggregate functions such as: MAX, MIN, MEAN, 
MEDIAN, and SUM.  Multiple constraints can be applied 
simultaneously with boolean compound operators.  We 
assume AND operators to hold higher precedence than OR 
operators.  Therefore, A AND B OR C is equivalent to (A 
AND B) OR C.  A sample constraint setup could be: 
 
 

 
Figure 1: Constraint Specification 

 
Upon receiving these constraints, the data-mining engine 
would return all student records that have an average 
course mark greater than or equal to 70% in classes with 
greater than 100 students and all student records that have 
one or more failed courses. 
 
2.2 Display and Layout 
In order to display an enumerated power set, we require a 
visualization method that could display vast amounts of 
information in a grid style configuration while being 
scalable to grid sizes exceeding the number of pixels 
available.  We also required a method of navigation that 
enabled a focus+context style zooming.  We decided that 
instead of developing the visualization infrastructure from 
scratch, we could build upon the AccordionDrawer 
package3 (developed by Dr. Munzner).  Of particular 
interest is the quad tree infrastructure, guaranteed visibility 
and progressive rendering.   
 
2.2.1 Quadtree Infrastructure 
We used AccordionDrawer’s quad tree to base our layout 
style.  As sets are returned from the data-mining engine, 
they are assigned to cells on a grid.  These grid cells 
compose the bottom layer of the quad tree.  Each grid cell 
has a parent cell that can hold up to 4 children.  We build 
up each layer until there is one root cell.  This infrastructure 
allows us to reduce rendering costs much like how 
mipmapping works.  That is, if we have 1 pixel to draw 40 
grid cells and we require a minimum of 1 pixel per grid 
cell, we only need to render the grid cell at the level where 
it contains all 40 cells.  Thus, we have reduced rendering 

                                                
3 developed by T. Munzner, F. Guimbretiere, S. 
Tasiran, Li. Zhang, and Y. Zhou for TreeJuxtaposer 

overhead with the penalty of requiring O(n log n) memory 
and a lookup of O(log n). 
  
2.2.2 Guaranteed Visibility 
As the size of the dataset grows, we reach a point where we 
have fewer pixels than we do sets.  This point actually 
occurs very early as we only require an alphabet size of 20 
before we start exceeding the capabilities of the standard 
display (1024x768).  Therefore, the average screen space 
allocated to a cell is less than 1 pixel.  However, to prevent 
information loss, we need to guarantee that all interesting 
sets are drawn.  A grid cell is coloured if it contains one or 
more descendent grid cells that are noted as interesting.  A 
coloured grid cell is guaranteed at least one pixel. 

 
2.2.3 Progressive Rendering 
When the number of entities needing to be drawn reaches a 
high enough number, we eventually reach a bottle neck 
around the rendering hardware.  As we need to be scalable 
to multiple systems, we must ensure that we do not 
overload the rendering hardware and cause a slow-down. 

 
We aim for a minimum of 20 frames per second (FPS).  To 
accomplish this, the entities to be drawn are broken down 
into small chunks that are fed to the rendering engine as 
time permits.  If we run out of time before a frame is 
complete, we draw it as is and continue drawing in the next 
frame. 

 
2.2.4 Layout 
To assign sets to cells, we chose a lexicographic layout 
strategy.  We enumerate the power set in increasing 
cardinality with singletons first and doubletons next and so 
forth.  Users have access to a toggle that colours the 
background grid with areas of similar cardinality coloured 
together.  Four light pastel colours are used to differentiate 
between differing cardinalities.  We chose unobtrusive 
colours since the main focus of the application is the 
visualization of the interesting sets and not the visualization 
of the entire enumerated power set. (See Figure 2). 
 
2.3 Navigation and Zooming 
An integral function of this application is the ability to 
“drill down”, manipulate and investigate sets and trends.  
Because we have chosen to display the entire power set at 
the same time, we do not support panning.  Additionally, 
we found no benefits in supporting rotations.  Therefore, 
the main emphasis is on zooming. 
 
In a traditional 1024x768 pixel display4, we can draw less 
than a million pixels.  Thus, we can display a maximum of 
a million distinct cells (default cell size of 1 pixel) or a 
dataset with alphabet size 20.  In order to work past this 
limitation, we take advantage of the AccordionDrawer’s 
infrastructure and zooming capability.  The user is able to 
grab and manipulate the position of grid lines to enlarge or 
decrease areas.  Limitations are set to prevent the user from

                                                
4 Gathered from several random popular websites. 



 
 
 

Figure 2: Lexicographic Ordering with Background Colours 
 
 
dragging edges to the absolute window borders and 
“losing” information.  A built-in safety region is set up 
on the edges.   
 
In practical applications, we found that the interesting 
sets exist only in areas of low cardinality.  Our choice 
of layout results in a clustering of sets in the upper 
areas of the grid.  To maintain a high information 
density, we enable automatic zooming.  We begin with 
a small grid.  As sets are returned from the data-
mining engine, they are added to the grid.  If we 
occupy a cell outside of the current visible range, we 

automatically zoom out to encompass the new 
interesting set. 
 
We found that until the grid is sufficiently large 
enough, virtually all new sets occur outside of the 
visible range.  Thus, the grid was constantly growing, 
and user interaction was impossible and useless.  At a 
cost of adding a delay between the data-mining engine 
and the visualization engine, we introduced a 
minimum time between re-zooms.  A delay under 1 
second caused confusion while a delay over 2 seconds 
felt like the server was responding too slowly.  A 



decision was made to use a minimum of 1 second 
between re-zooms. 
 
2.4 Animation 
We require animation when zooming to ensure that the 
user does not lose context of the navigation.  As 
discussed above, there are two main zooming 
scenarios: user-controlled zoom and automatic resize 
zoom.   
 
For the user-controlled zoom, we recalculate and 
redraw the display as long as the mouse button is held 
down.  This animation gives the user important 
feedback regarding his actions.  When rendering large 
datasets, we are unable to draw the entire dataset in 
1/20th of a second to maintain 20 FPS.  Therefore, we 
use the AccordionDrawer progressive rendering 
technique to ensure that only the areas of interest are 
drawn and, time permitting, the surrounding areas. 
 
The second instance of zooming occurs with the 
application’s automatic zooming and re-sizing.  
Initially we designed a jump-cut style re-zooming.  
However, we found that it was disorienting and the 
user spent time re-assimilating the location and layout 
of the grid.  We introduced animation to this re-
zooming process with no slow-down or speed-up 
techniques.  Steps are linearly interpolated according 
to a set number of animation steps. 
 
2.5 Groups and Marking 
We allow the user to create 3 types of groups.  A 
group is a collection of sets that are assigned a colour 
and can be resized separately.  There are a maximum 
of 6 groups and a set can belong to any number of 
groups.  If a set belongs to multiple groups, it adopts 
its colour according to group priority which is 
specified by the user. 
 
Three methods of adding sets to a group are possible: 
 
a) User-defined constraints 
 

Since querying a data-mining engine for results 
can be a lengthy process and depends on the size 
of the dataset, we realize that it is more 
convenient to encompass low cost queries in the 
client application.  The interface is identical to 
the initial server query interface and is analogous 
to a GUI style SQL query.  The result of Figure 
3’s query can be found as Figure 5. 
 
 

 
Figure 3: Constraint Selection 

 
b) Mouse selection 
 

For groups that do not conform to logical patterns 
in the data, we allow the user to manually select 
sets.  Two types of selection are available: 
individual picking and batch selection.  Initially, 
we had defined the batch selection algorithm to 
select all sets contained between a rectangle 
defined with opposite corners at the start and end 
drag points.  However, we found that there was 
no correlation between sets across rows.  So, we 
changed the selection algorithm to select all sets 
between the start and end sets going along rows. 
 

c) Filter 
 

In instances where we want to focus on a data 
field that contains categorical data, we can not 
use SQL type queries.  We list all the possible 
values in a list and allow the user to select all 
interesting values.  All sets that contain one or 
more items that have an interesting value is 
selected.  For example, if we are interested in 
filtering over departments in the student record 
scenario, we can select all student records that 
have students enrolled in at least one CPSC class 
and at least one MATH class. 
 

Figure 4: Filter Selection 
 
 



2.6 Implementation 
PowersetViewer is implemented in Java.  The base 
visualization package, AccordionDrawer, was 
developed by Dr. Munzner.  We extended this package 
and developed the AccordionPowersetDrawer 
package.  Inspiration for this package came from the 
AccordionSequenceDrawer package.  Our package 
describes the basic components of the power set 
including the basic visualization components, 
PowersetGridCells and SetNodes, and the 
datastructure to hold these components, Powerset.  
This package contains 3600 lines of commented code. 
 
The PowersetGridCell objects are the components of 
the AccordionDrawer’s QuadTree class.  They are 
responsible for keeping track of the components that 
do the actual drawing.  It stores its location within the 
grid and a path to the root.  These objects populate the 
QuadTree on all levels from the root to the leaves.  
And, they know their exact position on the screen to 
help in picking. 
 
The SetNode objects are the visual components that 
are attached to a PowersetGridCell.  Each SetNode 
keeps track of its set, its position in the grid (row and 
column) as well as its cached colour.  It is also 
responsible for drawing itself given a reference to the 
AccordionDrawer’s drawing method. 
 
The Powerset object contains the collection of sets as 
well as methods to add and remove sets on the fly.  
Because we are attempting to store an enumerated 
power set, we need to use a collection object that is 
not indexed by integers.  Integers have a maximum 
value of 2^32 and would effectively limit us to a 
power set of alphabet size 30 as discussed later.  
Additionally, we know that we require a collection 
that will use an amount of memory proportional to the 
number of interesting sets and not the size of the 
power set.  Finally, we expect to have a sparsely filled 
power set.  Thus, we determined that the best 
collection would be Java’s HashMap5.  We use Java’s 
BigInteger6, an arbitrarily large number, as a key to 
the map.  We noticed an extreme slow down when we 
transitioned to from integers to BigIntegers.  To 
counteract this slow-down, we store and pass integers 
and use these integers to lookup the BigInteger keys to 
the main HashMap.  This bridge also allows us to use 
the default parameters in AccordionDrawer as it 
passes around integer parameters. 
 
All GUI widgets, interfaces and visualization features 
are implemented in the application package, 

                                                
5 
http://java.sun.com/j2se/1.4.2/docs/api/java/util/
HashMap.html 
6 
http://java.sun.com/j2se/1.4.2/docs/api/java/math
/BigInteger.html 

PowersetViewer, with nearly 10000 lines of 
commented code. 
 
3. SAMPLE SCENARIOS 
We choose to use sample scenarios from a student 
record database.  We have access to old student 
records from the University of British Columbia.  We 
are yet unable to support an alphabet size as large as 
the university’s course list.  Therefore, we generated a 
smaller database with the same table setup on a 
smaller scale. 
 
3.1 Finding popular courses 

combinations 
We begin with a simple database query scenario.  We 
setup the server constraint to search all courses but 
with a frequency constraint of 0.1%.  That is, we want 
to display all sets of courses that are taken by at least 
0.1% of the student population. 

 
As sets are returned to the visualization engine, the 
user can determine if this query is returning too many 
or not enough sets.  He can then pause the query, relax 
or tighten the frequency constraint and resume the 
query. 

 
Suppose the user would like to confirm a hunch that 
students who take Computer Science courses prefer to 
take Philosophy over Anthropology courses.  He can 
set up one group to display students that take both 
CPSC and PHIL.  And, another group to display 
students that take CPSC and ANTH.  By hiding all 
other sets to reduce clutter, he could prove or disprove 
his results.  See Figure 6 for results. 

 
By hovering over the remaining sets, he could perhaps 
determine other popular courses that students take in 
conjunction with the above two combinations.  Thus, 
possibly leading him in other interesting directions. 
 
3.2 Finding course combinations (3 

courses) that result in high 
averages 

A different approach must be used to solve this query 
than the one used above.  We must query the data-
mining engine with a low frequency constraint and 
constraints on the course averages.  The low frequency 
constraint informs the server that we are interested in 
all combinations of courses taken.  The constraint on 
the course average ensures that we receive only sets of 
courses with a combined high average. 

 
The data-mining engine pays no attention to the size 
of each set.  So, the user must specify the desired set 
size on the visualization side.  By hiding or fading out 
all sets of cardinality not equal to 3, we have narrowed 
down our query to our desired specifications.  See 
Figure 7. 

 
4. EVALUATION 



PowersetViewer was designed with scalability in 
mind.  We have the intent of being able to support 
datasets with alphabet size of 50,000 items.  However, 
with the assumption that the max set size is 
significantly lower than the alphabet size.  A max set 
size of 50 seems feasible, albeit unprecedented.  At 
this stage, we have completed the tools and features of 
the application and are now concentrating on 
scalability. 
 
4.1 Strengths 
We believe that we have accomplished the majority of 
our design goals.  The majority of visualization 
techniques employed are highly scalable.  Our 
rendering time is limited not by the size of the dataset 
but by the size of the display.  The quad tree structure 
ensures that we only render cells that are guaranteed 
not to be culled.  Additionally, the progressive 
rendering technique allows us to maintain a pleasing 
20 FPS7 to ensure adequate feedback to the user. 

 
Our zooming and navigation techniques coupled with 
guaranteed visibility ensure that all information 
available is displayed.  We avoid occlusion and 
information loss by using a focus+context style 
navigation in 2D.  And, our automatic zooming 
ensures high information density without altering the 
layout or risking confusing the user. 
 
4.2 Weaknesses 
Although we have successfully implemented the 
prototype, we are yet unable to display a power set 
with an alphabet size larger than 30.  Since we index 
all possible sets within the power set, our limitation 
lies with the maximum size of an integer, 2^32.  To 
address this problem, we reduced the max possible set 
cardinality to 10.  This resulted in an increase of the 
alphabet by more than 50%.  We are now able to 
support set sizes of 45 with a max set size of 10 items. 

 
We attempted to use Java’s BigInteger class to remove 
the max integer constraint.  However, we are unable to 
use primitive arrays since we can only address 
locations with the integer primitive.  Therefore, we 
had to re-implement our array data structures with 
structures that were not limited to integers.  This 
resulted in an unacceptable slow-down of the 
application and so a new approach will need to be 
devised. 

 
4.3 Benchmarks 
Our preliminary benchmarks demonstrate a nearly 
logarithmic growth on datasets generated from the 
lowest cardinality sets.  This results in all sets 
clustering at the top and filling downwards.  We notice 
the initial memory cost to be unusually high compared 
with the amount of memory required to store the sets. 

 
MEMORY (MB) NUMBER OF SETS 
                                                
7 http://www.compuphase.com/animtips.htm 

74 10M 
75 1M 
74 100,000 
73 10,000 
58 1,000 
 
Table 1: Low Cardinality First (Artificial) – Alphabet 
size 15 

 
In efforts to have a more realistic scattering of sets, we 
benchmarked PowersetViewer with smaller sample 
sizes but with sets that are scattered across the dataset 
again with significant clustering across the lower 
cardinalities.  We notice the expected linear growth 
with respect to the set size. 
 
MEMORY (MB) NUMBER OF SETS 
72 263 
73 244 
71 168 
72 160 
70 127 
70 45 
72 30 
71 10 
64 0 
 
Table 2: Random Generated (Artificial) – Alphabet 
size 15 

 
5. LESSONS LEARNED 
Over the span of this course and project, we learned 
that: 
 

• Designing a user interface that is intuitive 
and functional is no easy task.  We went 
through several iterations of various GUI 
widgets before the current design was settled 
on. 

• In order to implement a highly scalable 
application, every design step must take 
scalability into consideration.  
Unfortunately, we did not foresee the 
limitations that the base visualization engine 
would introduce into the application. 

• In comparison with other high-level 
programming languages, Java uses extreme 
amounts of memory.  However, it did allow 
for a quicker implementation time.  

 
6. FUTURE WORK 
As noted in section 4.2 Weaknesses, we encountered 
certain areas that need extensive redesign in order to 
achieve our goal of a highly scalable application.  
Most importantly, we have begun to redesign the 
visualization engine in conjunction with Dr. Munzner 
and James Slack.  We plan to generate the QuadTree 
object on the fly as opposed to pre-generating.  This 
will result in a data structure that takes advantage of 



the sparseness of our grid as well as the delay between 
the data-mining engine and the client. 
 
Our current animation algorithms linearly interpolate 
the intermediate positions based on a set number of 
changes.  In the future, it may be beneficial to alter 
animation sequences based on the number of changes, 
number of perceptual changes and the distance of the 
change.  Additionally, slow-in/slow-out animations 
may aid the user in maintaining context. 
 
The current layout of sets on the grid is analogous to 
the way words are laid out on a page.  This setup 
results in no correlation between rows.  Research will 
have to be done on whether there are any generic 
layouts that are more useful.  Perhaps layouts will 
need to be designed by field experts. 
 
Our current set selection method for groups does not 
allow a hybrid of selection algorithms.  For example, 
it is not possible to filter with an SQL type query and a 
set contents query.  The computation behind the 
queries are simple, however, an intuitive widget will 
need to be designed. 
 
We currently supply an initial set of colours to be used 
for the grid.  However, we do not suggest any colours 
for the marking groups and it is up to the user to 
choose useful colours.  A complete colour pass will 
need to be executed. 
 
7. CONCLUSION 
PowersetViewer was developed as a tool to visualize 
power sets.  It can be applied to many fields and 
scenarios.  Most interesting is the field of data-mining.  
We tailored the tool to analyze transaction logs as a 
method to analyze and detect trends. 
 
Several visualization techniques were employed to 
emphasize precognitive abilities and reduce cognitive 
overhead.  In particular, we used a focus+context 
technique to navigate and zoom around the dataset.  
Additionally, we utilized animation to help maintain 
position and context when navigating. 
 
We believe that with continued development, this tool 
will be able to visualize and aid in other fields such as 
AI-searching by displaying and allowing human 
intervention. 
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Figure 5: Results after constraint selection in Figure 3 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Figure 6: Results after Scenario 1. 
 



 
 

Figure 7: Results after Scenario 2. 


