
PowersetViewer: An Interactive Data mining Application

Jordan Lee

CS 533C: Information Visualization
Department of Computer Science
University of British Columbia

201-2366 Main Mall
Vancouver BC Canada V6T 1Z4

jordanel@cs.ubc.ca

ABSTRACT
In the Information Age, data-mining has become a valuable
tool. As long as there are needs and benefits from detecting
and analyzing trends, there will be a need for data-mining.
Traditionally, an expert in the field is required to search for
“gems” of information from hunches and intuition. This
task is generally tedious and ineffective as existing support
applications only work to confirm these hunches. We
introduce PowersetViewer to empower the user with an
application that detects, rather than confirms, trends. By
taking advantage of human precognitive abilities and
intuition, we believe that this application will be highly
scalable to large datasets.

1. INTRODUCTION
In the past, when record keeping and data acquisition were
in their infancy, searching for trends within datasets was a
relatively small task. This task was traditionally small
enough that it could be completed without the aid of
complex applications and relied mostly on human intuition.

As data acquisition techniques advanced, datasets began to
grow exponentially1. Initially, throwing computing power
at data-mining applications was sufficient. The algorithm
would be pointed in a general direction and it would
continue to search blindly. Without the help of human
intuition, it is possible that the algorithm could get lost or
search in the wrong direction2. We needed a way to
reintegrate the user into the algorithm. To answer this
issue, data-mining applications began to incorporate
artificial intelligence assigned with the responsibility to
make decisions throughout the algorithm. However,
artificial intelligence research is expensive and still relies
heavily on computing power.

Today, data acquisition techniques are advancing as fast or
faster than Moore’s law claims we can keep up1. A
significant change in the progress of data-mining is
required to keep up with the advances of data acquisition.
We believe that by bringing human intuition back into the

1 http://bioinfo.weizmann.ac.il/cards/knowledge.html
2 http://www.it-
analysis.com/researcharchivepdf.php?id=259

process, we will be able to overcome the computing power
bottleneck.

2. POWERSETVIEWER
PowersetViewer is a visualization tool to enumerate and
display a power set. More specifically, display the
interesting sets within a power set. Interesting sets are
defined as sets that are either of interest to the user or of
interest to the data-mining engine. User-specified
interesting sets could include sets based on hunches
(confirmation). Data-mining specified interesting sets
could include sets occurring frequently in the dataset
(detection). In practical applications, interesting sets are
scattered sparsely and have relatively low cardinality as
compared to the size of the dataset’s alphabet. This is a
key property of data-mining and was taken into
consideration throughout the design phase.

We have developed a series of tools to ensure that users
have all the features traditionally found on data-mining
applications. And, combined with several information
visualization techniques, we believe that PowersetViewer
will work simultaneously as a detection and confirmation
data-mining tool.

2.1 Data-mining Engine Driver
A driving interface is required to allow the user to control
the data-mining engine throughout the search algorithm. It
is unlikely that an expert would be able to successfully
guess the location of trends. If this were the case,
confirmation techniques would suffice. However, as
datasets grow the likelihood of knowing where to look
decreases dramatically. Therefore, we require trend
detection techniques or rather, techniques that enable the
user to detect trends.

To accomplish this, we ensure that information received
from the data-mining engine is displayed immediately
(discussed later) so that the user can make decisions as
soon as the information is made available. At any time
during the search, the user can interrupt the data-mining
engine and tighten or relax constraints. Should he believe
that the data-mining engine is thrashing or on a completely
useless course, a new set of constraints can be supplied.

Currently, we use standard statistical calculations to filter
the entire dataset. The user can choose from various
aggregate functions such as: MAX, MIN, MEAN,
MEDIAN, and SUM. Multiple constraints can be applied
simultaneously with boolean compound operators. We
assume AND operators to hold higher precedence than OR
operators. Therefore, A AND B OR C is equivalent to (A
AND B) OR C. A sample constraint setup could be:

Figure 1: Constraint Specification

Upon receiving these constraints, the data-mining engine
would return all student records that have an average
course mark greater than or equal to 70% in classes with
greater than 100 students and all student records that have
one or more failed courses.

2.2 Display and Layout
In order to display an enumerated power set, we require a
visualization method that could display vast amounts of
information in a grid style configuration while being
scalable to grid sizes exceeding the number of pixels
available. We also required a method of navigation that
enabled a focus+context style zooming. We decided that
instead of developing the visualization infrastructure from
scratch, we could build upon the AccordionDrawer
package3 (developed by Dr. Munzner). Of particular
interest is the quad tree infrastructure, guaranteed visibility
and progressive rendering.

2.2.1 Quadtree Infrastructure
We used AccordionDrawer’s quad tree to base our layout
style. As sets are returned from the data-mining engine,
they are assigned to cells on a grid. These grid cells
compose the bottom layer of the quad tree. Each grid cell
has a parent cell that can hold up to 4 children. We build
up each layer until there is one root cell. This infrastructure
allows us to reduce rendering costs much like how
mipmapping works. That is, if we have 1 pixel to draw 40
grid cells and we require a minimum of 1 pixel per grid
cell, we only need to render the grid cell at the level where
it contains all 40 cells. Thus, we have reduced rendering

3 developed by T. Munzner, F. Guimbretiere, S.
Tasiran, Li. Zhang, and Y. Zhou for TreeJuxtaposer

overhead with the penalty of requiring O(n log n) memory
and a lookup of O(log n).

2.2.2 Guaranteed Visibility
As the size of the dataset grows, we reach a point where we
have fewer pixels than we do sets. This point actually
occurs very early as we only require an alphabet size of 20
before we start exceeding the capabilities of the standard
display (1024x768). Therefore, the average screen space
allocated to a cell is less than 1 pixel. However, to prevent
information loss, we need to guarantee that all interesting
sets are drawn. A grid cell is coloured if it contains one or
more descendent grid cells that are noted as interesting. A
coloured grid cell is guaranteed at least one pixel.

2.2.3 Progressive Rendering
When the number of entities needing to be drawn reaches a
high enough number, we eventually reach a bottle neck
around the rendering hardware. As we need to be scalable
to multiple systems, we must ensure that we do not
overload the rendering hardware and cause a slow-down.

We aim for a minimum of 20 frames per second (FPS). To
accomplish this, the entities to be drawn are broken down
into small chunks that are fed to the rendering engine as
time permits. If we run out of time before a frame is
complete, we draw it as is and continue drawing in the next
frame.

2.2.4 Layout
To assign sets to cells, we chose a lexicographic layout
strategy. We enumerate the power set in increasing
cardinality with singletons first and doubletons next and so
forth. Users have access to a toggle that colours the
background grid with areas of similar cardinality coloured
together. Four light pastel colours are used to differentiate
between differing cardinalities. We chose unobtrusive
colours since the main focus of the application is the
visualization of the interesting sets and not the visualization
of the entire enumerated power set. (See Figure 2).

2.3 Navigation and Zooming
An integral function of this application is the ability to
“drill down”, manipulate and investigate sets and trends.
Because we have chosen to display the entire power set at
the same time, we do not support panning. Additionally,
we found no benefits in supporting rotations. Therefore,
the main emphasis is on zooming.

In a traditional 1024x768 pixel display4, we can draw less
than a million pixels. Thus, we can display a maximum of
a million distinct cells (default cell size of 1 pixel) or a
dataset with alphabet size 20. In order to work past this
limitation, we take advantage of the AccordionDrawer’s
infrastructure and zooming capability. The user is able to
grab and manipulate the position of grid lines to enlarge or
decrease areas. Limitations are set to prevent the user from

4 Gathered from several random popular websites.

Figure 2: Lexicographic Ordering with Background Colours

dragging edges to the absolute window borders and
“losing” information. A built-in safety region is set up
on the edges.

In practical applications, we found that the interesting
sets exist only in areas of low cardinality. Our choice
of layout results in a clustering of sets in the upper
areas of the grid. To maintain a high information
density, we enable automatic zooming. We begin with
a small grid. As sets are returned from the data-
mining engine, they are added to the grid. If we
occupy a cell outside of the current visible range, we

automatically zoom out to encompass the new
interesting set.

We found that until the grid is sufficiently large
enough, virtually all new sets occur outside of the
visible range. Thus, the grid was constantly growing,
and user interaction was impossible and useless. At a
cost of adding a delay between the data-mining engine
and the visualization engine, we introduced a
minimum time between re-zooms. A delay under 1
second caused confusion while a delay over 2 seconds
felt like the server was responding too slowly. A

decision was made to use a minimum of 1 second
between re-zooms.

2.4 Animation
We require animation when zooming to ensure that the
user does not lose context of the navigation. As
discussed above, there are two main zooming
scenarios: user-controlled zoom and automatic resize
zoom.

For the user-controlled zoom, we recalculate and
redraw the display as long as the mouse button is held
down. This animation gives the user important
feedback regarding his actions. When rendering large
datasets, we are unable to draw the entire dataset in
1/20th of a second to maintain 20 FPS. Therefore, we
use the AccordionDrawer progressive rendering
technique to ensure that only the areas of interest are
drawn and, time permitting, the surrounding areas.

The second instance of zooming occurs with the
application’s automatic zooming and re-sizing.
Initially we designed a jump-cut style re-zooming.
However, we found that it was disorienting and the
user spent time re-assimilating the location and layout
of the grid. We introduced animation to this re-
zooming process with no slow-down or speed-up
techniques. Steps are linearly interpolated according
to a set number of animation steps.

2.5 Groups and Marking
We allow the user to create 3 types of groups. A
group is a collection of sets that are assigned a colour
and can be resized separately. There are a maximum
of 6 groups and a set can belong to any number of
groups. If a set belongs to multiple groups, it adopts
its colour according to group priority which is
specified by the user.

Three methods of adding sets to a group are possible:

a) User-defined constraints

Since querying a data-mining engine for results
can be a lengthy process and depends on the size
of the dataset, we realize that it is more
convenient to encompass low cost queries in the
client application. The interface is identical to
the initial server query interface and is analogous
to a GUI style SQL query. The result of Figure
3’s query can be found as Figure 5.

Figure 3: Constraint Selection

b) Mouse selection

For groups that do not conform to logical patterns
in the data, we allow the user to manually select
sets. Two types of selection are available:
individual picking and batch selection. Initially,
we had defined the batch selection algorithm to
select all sets contained between a rectangle
defined with opposite corners at the start and end
drag points. However, we found that there was
no correlation between sets across rows. So, we
changed the selection algorithm to select all sets
between the start and end sets going along rows.

c) Filter

In instances where we want to focus on a data
field that contains categorical data, we can not
use SQL type queries. We list all the possible
values in a list and allow the user to select all
interesting values. All sets that contain one or
more items that have an interesting value is
selected. For example, if we are interested in
filtering over departments in the student record
scenario, we can select all student records that
have students enrolled in at least one CPSC class
and at least one MATH class.

Figure 4: Filter Selection

2.6 Implementation
PowersetViewer is implemented in Java. The base
visualization package, AccordionDrawer, was
developed by Dr. Munzner. We extended this package
and developed the AccordionPowersetDrawer
package. Inspiration for this package came from the
AccordionSequenceDrawer package. Our package
describes the basic components of the power set
including the basic visualization components,
PowersetGridCells and SetNodes, and the
datastructure to hold these components, Powerset.
This package contains 3600 lines of commented code.

The PowersetGridCell objects are the components of
the AccordionDrawer’s QuadTree class. They are
responsible for keeping track of the components that
do the actual drawing. It stores its location within the
grid and a path to the root. These objects populate the
QuadTree on all levels from the root to the leaves.
And, they know their exact position on the screen to
help in picking.

The SetNode objects are the visual components that
are attached to a PowersetGridCell. Each SetNode
keeps track of its set, its position in the grid (row and
column) as well as its cached colour. It is also
responsible for drawing itself given a reference to the
AccordionDrawer’s drawing method.

The Powerset object contains the collection of sets as
well as methods to add and remove sets on the fly.
Because we are attempting to store an enumerated
power set, we need to use a collection object that is
not indexed by integers. Integers have a maximum
value of 2^32 and would effectively limit us to a
power set of alphabet size 30 as discussed later.
Additionally, we know that we require a collection
that will use an amount of memory proportional to the
number of interesting sets and not the size of the
power set. Finally, we expect to have a sparsely filled
power set. Thus, we determined that the best
collection would be Java’s HashMap5. We use Java’s
BigInteger6, an arbitrarily large number, as a key to
the map. We noticed an extreme slow down when we
transitioned to from integers to BigIntegers. To
counteract this slow-down, we store and pass integers
and use these integers to lookup the BigInteger keys to
the main HashMap. This bridge also allows us to use
the default parameters in AccordionDrawer as it
passes around integer parameters.

All GUI widgets, interfaces and visualization features
are implemented in the application package,

5
http://java.sun.com/j2se/1.4.2/docs/api/java/util/
HashMap.html
6
http://java.sun.com/j2se/1.4.2/docs/api/java/math
/BigInteger.html

PowersetViewer, with nearly 10000 lines of
commented code.

3. SAMPLE SCENARIOS
We choose to use sample scenarios from a student
record database. We have access to old student
records from the University of British Columbia. We
are yet unable to support an alphabet size as large as
the university’s course list. Therefore, we generated a
smaller database with the same table setup on a
smaller scale.

3.1 Finding popular courses

combinations
We begin with a simple database query scenario. We
setup the server constraint to search all courses but
with a frequency constraint of 0.1%. That is, we want
to display all sets of courses that are taken by at least
0.1% of the student population.

As sets are returned to the visualization engine, the
user can determine if this query is returning too many
or not enough sets. He can then pause the query, relax
or tighten the frequency constraint and resume the
query.

Suppose the user would like to confirm a hunch that
students who take Computer Science courses prefer to
take Philosophy over Anthropology courses. He can
set up one group to display students that take both
CPSC and PHIL. And, another group to display
students that take CPSC and ANTH. By hiding all
other sets to reduce clutter, he could prove or disprove
his results. See Figure 6 for results.

By hovering over the remaining sets, he could perhaps
determine other popular courses that students take in
conjunction with the above two combinations. Thus,
possibly leading him in other interesting directions.

3.2 Finding course combinations (3

courses) that result in high
averages

A different approach must be used to solve this query
than the one used above. We must query the data-
mining engine with a low frequency constraint and
constraints on the course averages. The low frequency
constraint informs the server that we are interested in
all combinations of courses taken. The constraint on
the course average ensures that we receive only sets of
courses with a combined high average.

The data-mining engine pays no attention to the size
of each set. So, the user must specify the desired set
size on the visualization side. By hiding or fading out
all sets of cardinality not equal to 3, we have narrowed
down our query to our desired specifications. See
Figure 7.

4. EVALUATION

PowersetViewer was designed with scalability in
mind. We have the intent of being able to support
datasets with alphabet size of 50,000 items. However,
with the assumption that the max set size is
significantly lower than the alphabet size. A max set
size of 50 seems feasible, albeit unprecedented. At
this stage, we have completed the tools and features of
the application and are now concentrating on
scalability.

4.1 Strengths
We believe that we have accomplished the majority of
our design goals. The majority of visualization
techniques employed are highly scalable. Our
rendering time is limited not by the size of the dataset
but by the size of the display. The quad tree structure
ensures that we only render cells that are guaranteed
not to be culled. Additionally, the progressive
rendering technique allows us to maintain a pleasing
20 FPS7 to ensure adequate feedback to the user.

Our zooming and navigation techniques coupled with
guaranteed visibility ensure that all information
available is displayed. We avoid occlusion and
information loss by using a focus+context style
navigation in 2D. And, our automatic zooming
ensures high information density without altering the
layout or risking confusing the user.

4.2 Weaknesses
Although we have successfully implemented the
prototype, we are yet unable to display a power set
with an alphabet size larger than 30. Since we index
all possible sets within the power set, our limitation
lies with the maximum size of an integer, 2^32. To
address this problem, we reduced the max possible set
cardinality to 10. This resulted in an increase of the
alphabet by more than 50%. We are now able to
support set sizes of 45 with a max set size of 10 items.

We attempted to use Java’s BigInteger class to remove
the max integer constraint. However, we are unable to
use primitive arrays since we can only address
locations with the integer primitive. Therefore, we
had to re-implement our array data structures with
structures that were not limited to integers. This
resulted in an unacceptable slow-down of the
application and so a new approach will need to be
devised.

4.3 Benchmarks
Our preliminary benchmarks demonstrate a nearly
logarithmic growth on datasets generated from the
lowest cardinality sets. This results in all sets
clustering at the top and filling downwards. We notice
the initial memory cost to be unusually high compared
with the amount of memory required to store the sets.

MEMORY (MB) NUMBER OF SETS

7 http://www.compuphase.com/animtips.htm

74 10M
75 1M
74 100,000
73 10,000
58 1,000

Table 1: Low Cardinality First (Artificial) – Alphabet
size 15

In efforts to have a more realistic scattering of sets, we
benchmarked PowersetViewer with smaller sample
sizes but with sets that are scattered across the dataset
again with significant clustering across the lower
cardinalities. We notice the expected linear growth
with respect to the set size.

MEMORY (MB) NUMBER OF SETS
72 263
73 244
71 168
72 160
70 127
70 45
72 30
71 10
64 0

Table 2: Random Generated (Artificial) – Alphabet
size 15

5. LESSONS LEARNED
Over the span of this course and project, we learned
that:

• Designing a user interface that is intuitive
and functional is no easy task. We went
through several iterations of various GUI
widgets before the current design was settled
on.

• In order to implement a highly scalable
application, every design step must take
scalability into consideration.
Unfortunately, we did not foresee the
limitations that the base visualization engine
would introduce into the application.

• In comparison with other high-level
programming languages, Java uses extreme
amounts of memory. However, it did allow
for a quicker implementation time.

6. FUTURE WORK
As noted in section 4.2 Weaknesses, we encountered
certain areas that need extensive redesign in order to
achieve our goal of a highly scalable application.
Most importantly, we have begun to redesign the
visualization engine in conjunction with Dr. Munzner
and James Slack. We plan to generate the QuadTree
object on the fly as opposed to pre-generating. This
will result in a data structure that takes advantage of

the sparseness of our grid as well as the delay between
the data-mining engine and the client.

Our current animation algorithms linearly interpolate
the intermediate positions based on a set number of
changes. In the future, it may be beneficial to alter
animation sequences based on the number of changes,
number of perceptual changes and the distance of the
change. Additionally, slow-in/slow-out animations
may aid the user in maintaining context.

The current layout of sets on the grid is analogous to
the way words are laid out on a page. This setup
results in no correlation between rows. Research will
have to be done on whether there are any generic
layouts that are more useful. Perhaps layouts will
need to be designed by field experts.

Our current set selection method for groups does not
allow a hybrid of selection algorithms. For example,
it is not possible to filter with an SQL type query and a
set contents query. The computation behind the
queries are simple, however, an intuitive widget will
need to be designed.

We currently supply an initial set of colours to be used
for the grid. However, we do not suggest any colours
for the marking groups and it is up to the user to
choose useful colours. A complete colour pass will
need to be executed.

7. CONCLUSION
PowersetViewer was developed as a tool to visualize
power sets. It can be applied to many fields and
scenarios. Most interesting is the field of data-mining.
We tailored the tool to analyze transaction logs as a
method to analyze and detect trends.

Several visualization techniques were employed to
emphasize precognitive abilities and reduce cognitive
overhead. In particular, we used a focus+context
technique to navigate and zoom around the dataset.
Additionally, we utilized animation to help maintain
position and context when navigating.

We believe that with continued development, this tool
will be able to visualize and aid in other fields such as
AI-searching by displaying and allowing human
intervention.

8. REFERENCES

[1] T. Munzner, F. Guimbretiere, S. Tasiran, Li.
Zhang, and Y. Zhou. TreeJuxtaposer: Scalable Tree
Comparison using Focus+Context with Guaranteed
Visibility. SIGGRAPH 2003.

[2] J. Slack, K. Hildebrand, T. Munzner, and K. St.
John. Fluid Navigation For Large-Scale Sequence
Comparison.

[3] J. Han, M. Kamber, and A. K. H. Tung. Spacial
Clustering Methods in Data Mining: A Survey. H.
Miller and J.Han (eds.), Atlanta , GA, Nov. 2001.

Figure 5: Results after constraint selection in Figure 3

Figure 6: Results after Scenario 1.

Figure 7: Results after Scenario 2.

