
JQuery with Multiple Views

Edward McCormick
Computer Science

University of British Columbia
Vancouver, BC, Canada

emccormi@cs.ubc.ca

General Terms
Navigation, Visualization, Browser, Query Engine

Keywords
Object Oriented Programming, Aspect Oriented Program-
ming, Modular Programming, Concern Separation, Tangling,
Synchronized Views

ABSTRACT
In this paper we argue that JQuery’s current tree hierarchy
visualization for exploring query results does not provide
enough contextual information for each node. Due to the
unrestrictive nature of query-based exploration, the devel-
oper may often find himself viewing a set of code that does
not pertain to his task. Should this occur, he must re-trace
his steps until he finds the point in the query path where a
’wrong turn’ was made. We propose that by providing non-
queryable browsers side-by-side and sychronized with the
query browser, the developer will gain useful information on
how the element he is currently exploring relates to the rest
of the system. We argue that use of our visualization will re-
sult in fewer missed opportunities for more effective queries
as well as less disorientation during the re-tracing process.
To support our claims, we have built a prototype which we
call JQuery with Multiple Views.

1. INTRODUCTION
Many of todays IDE’s, such as the Java Browser of Eclipse[1],
allow the developer simultaneous use of multiple structural
views such as method call hierarchies and type hierarchies
as well as organizational views such as the outline view or
package explorer. JQuery was built because although there
may be a need for each of these views, continually switching
from one view to the next can place a great cognitive bur-
den on the developer. This is because each time a developer
switches views during an exploration task, he must spend a
moment re-orienting himself to the new view. This can lead

to disorientation and confusion, delaying or even impeding
the developer’s progress.

This phenomenom, which the authors of [2] call Explosion
of the Browsers, is addressed in the JQuery tool by allow-
ing the developer to perform his exploration of the system
entirely within a single browser. To use the tool, the de-
veloper first creates a browser by writing a recursive query
describing the elements of the system he is interested in ex-
ploring. The query engine executes the query and returns
the result as a tree hierarchy. The user is then able to browse
this hierarchy, and execute context specific queries on any
node of interest. Each query results with the tree updating
the queried node with child nodes representing the results
of the query. In this way, a great deal of information can
be viewed within a single view, combatting the issues asso-
ciated with an ’explosion of browsers’.

JQuery is a query-based source code browser for Java. Using
JQuery, a developer is able to create a hierarchical browser
of an Object Oriented system by writing a query. He is
then able to perform successive queries on the nodes of the
browser to form horizontal query paths. Although we find
JQuery to be a highly useful tool, we believe that presenting
the results of a developer’s contextual queries as a series of
child/parent relationships branching out from a structured
browser is unsatisfactory. Following a query based explo-
ration of the code, the developer is presented with a tree
hierarchy whose elements relate to other elements of the
code in more ways than are visible. We argue that this lim-
itation may become a great hinderance when the developer
must utilize the information to affect a change in the code.
For example, perhaps the developer unknowingly visited the
same node twice, causing an unnoticed recursion in his query
path. Or perhaps there are relationships between explored
elements which are absent from the path because the de-
veloper did not query for that information directly. In each
situation, the developer may become confused and create an
error in his code. We believe that such situations reveal a
limitation inherent in trying to fit a multi-dimensional graph
into a two dimentional tree structure.

In this paper we address these issues by presenting an alter-
native visualization for JQuery. In our visualization, which
we call JQuery with Multiple Views, the developer will
focus mainly on the query path in order to escape the draw-
backs associated with an explosion of browsers, but will
also be given the option of creating non-queryable, well-



structured browsers of the system to mirror his current po-
sition in the query path. Well-structured views are views
in which all parent/child relationships are of the same type.
These optional views present a means by which the devel-
oper can quickly re-orient himself within the system as a
whole, while gathering useful information about the cur-
rently selected node. We show that by revealing contextual
information for nodes in the query path, the developer may
quickly gather how the current node fits into the system as
a whole.

2. JQUERY
2.1 Design Motivations
Prior to redesigning JQuery, an evaluation of the current
version was performed in order gain a better understanding
of the motivations behind its current design. Through our
own experimentations and regular interviews with the lead
developer of JQuery1, we were able to identify the following
three high priority features.

One: The browser must take up as little screen real-estate
as possible, in order to leave room for a code editor. We ob-
served that an expert user of JQuery set up his workspace
as shown in Figure 1. This layout appears to allow ample
room for both the code editor and the JQuery view. How-
ever, as the query path begins to grow, we found that the
developer needed to scroll left to right in the query window
in order to view the entire query path.

Two: Queries that do not reveal useful information must
be easily pruned from a query path. It is often the case that
the developer performs a series of queries that do not result
in nodes pertinent to his task. If these results are left in
the query path they may cause confusion later, should the
developer need to retrace his steps.

Three: The chronology of a query path must be easily intu-
ited from the visualization. With a tree hierarchy the devel-
oper is able to discern query nodes from query results by the
color of the icon next to the node. Query result nodes are
always displayed as child nodes of query nodes, and query
nodes are always displayed as children of the node that the
query was performed on.

2.2 Typical Use
We observe in [2, 5] that the typical layout chosen for Eclipse
when using JQuery is the Java Perspective. Figure 1 depicts
a typical scenario, with the JQuery view vertically alligned
with the left-hand side of the screen and the remainder of the
screen used by the code editor. As described in [2], there
is a distinction between a view and a browser in JQuery.
In the figure, the view is labeled Tree 1: spacewar, and
contains a query window, labeled Active Query and a con-
sole, which provides a means to relay error and log messages.
JQuery provides the developer with vertical and horizontal
scroll bars because, as shown in the figure, the length of a
query path often grows exceeds the width of the view. Each
view can contain multiple browsers. The Active Query
view contains a browser called Package Browser, which
has been opened to reveal all classes contained within the

1Kris DeVolder was a lead developer on the project and
continues to use JQuery for all his development tasks

spacewar package. Beneath the class Player, there are two
sub-queries named Fields and Inverted Hierarchy. In this
example, the user has become interested in Pilot, a super-
class of Player, which was returned as a result of the Inverted
Hierarchy query. By double-clicking on any of the nodes in
the browser, the developer can view the selected program
element in a code editor.

3. JQUERY WITH MULTIPLE VIEWS
A developer may choose to open as many views as he wishes,
but there must always be one Active Query view, within
which he may make context specific queryies on nodes. To
add or remove a view, he may select a menu option. This
may be done in the middle of a navigation if necessary; the
new view will automatically synchronize itself with the other
views.

In our prototype, we allow the developer to synchronize the
views by selecting a particular node of interest in any of the
views. If the selected node appears in any of the views, it is
revealed and highlighted with a particular color. If there is
more than one copy of the node in a view, the highest node
up in the view will be revealed. Copies of the node existing
even within the query path itself would be highlighted, in
order to alert the developer that he has already come across
this node previously in his exploration and to keep him re-
dundant exploration. The user is able to synchronize views
by up to five nodes at any time. When a node is selected,
the icon next to it and any nodes that match it changes to
one of 5 colors Blue, Green, Grey, Magenta and Yellow. If
the user wishes to clear the five selections, he may select
that option from a menu and all nodes will revert back to
their original color.

The typical Eclipse layout used by a JQuery user places the
JQuery window in a vertical position side-by-side with the
code editor. Using this layout, when queries are performed
on nodes, the user must scroll left-to-right to examine his full
query path. We suppose that this particular layout is pre-
ferred due to its similarity to the Eclipse Package Explorer
that most Eclipse users are used to2. Our first decision in
designing JQuery with Multiple Views was to model it more
on the Java Browser perspective of Eclipse, which is sim-
ilar to the SmallTalk Browser[4]. Using this perspective,
structural views are presented side-by-side at the top of the
screen above the code editor, which fills the lower half of
the screen. We believe this layout is better suited to the
horizontal query paths of JQuery.

4. USE CASES
The following scenarios highlight the usefulness of using mul-
tiple views with JQuery. Each case was built from real-world
experience the author had in adapting a game called Space-
war to meet his needs.

4.1 Querying with Multiple Views
Tom recently downloaded the source code for a game called
Spacewar. He wants to achieve a high score, and does not
have time to practice. To achieve his goal, Tom decides

2The layout decision was not mentioned in any of the JQuery
literature



Figure 1: A Typical Query Setup

to manipulate the code so that his player will not lose en-
ergy when hit with bullets from the enemy. Tom decides
that JQuery with Multiple Views will help him in this task,
so he opens up an Active Query window and two other
browsers. In the Active Query view he opens a Package Ex-
plorer Browser. He then creates a Call Hierarchy browser
in one of the views and a Field Access browser in the other.
The Call Hierarchy browser lists all methods in the Spacewar
program, and the child nodes of each node are the methods
that call it. The Field Access browser contains three levels:
it lists all fields in the Spacewar program with the locations
in the source code where these fields are written or read as
child nodes, and the method where that source location ex-
ists as the third level. Tom then begins his task of figuring
out how to keep his energy from being lowered during play.
The browser created by Tom is shown in Figure 2.

Tom begins his task by examining the package explorer. He
finds a class called Player there and decides he has found
a good starting point. He queries for the fields of Player
first, hoping to find a field that might be connected with
an energy field. Since that does not exist, he queries for
superclasses of Player. He finds that a super class exists,
called Pilot. He queries for Pilot ’s fields and finds one called
energy. He double-clicks on this field and the node energy is
revealed in Green in the field accesses browser in a separate
view. He searches this browser for locations in Spacewar
where this field is written or read and finds a method called
handleCollision. He double-clicks on this method and the
node turns light grey. As a side effect, the method call

hierarchy browser is updated to reveal multiple instances
of grey nodes - signifying that handleCollision contains
multiple call sites. One of these call sites refers to a method
called inflictDamage. Tom double clicks on this node and
decides to read the associated code in the code editor. He
finds that this method, contained in the class Ship does in
fact decrease the amount of ’energy’ the ship contains. Tom
decides that he now has enough information to complete his
task. He opens the handleCollision method and places an
instanceof check to see if Pilot is a Player. If this check
returns true, he does not allow a call to inflictDamage.
Tom runs his code and finds that it works as he had hoped.

4.2 Building a Multi-dimensional Browser
Edward has just downloaded the Spacewar source code. He
is a long time fan of the game, but he believes it would be
a lot more fun with sound effects. He decides he would like
to add sound to the game, and he wishes to start by playing
an audio file every time he fires his gun at the enemy. He
is an experienced user of JQuery with Multiple Views, so
he begins be creating a few browsers he feels will be helpful
for his task. He decides that the browser he will use as an
Active Query View will be a Package Explorer. He then
creates a Class Members browser, which lists all the classes
by package and all of their members (methods and fields)
as child nodes. Next he creates a Class Creation browser,
which lists all classes that instantiate other classes, with
the instantiated classes ordered by the method within which
they are instantiated. Lastly a Type Hierarchies browser is
created. This browser lists all types that have subtypes. The



Figure 2: Tom’s Browser

subtypes are child nodes of the parent types. The browsers
Edward created are shown in Figure 3.

Edward begins his task by selecting Bullet in the Package
Explorer. The Bullet node turns grey, and Edward notices
that Bullet has shown up in the other three browsers, but
most interestingly in the Class Creation browser. There, he
finds that Bullet classes are instantiated in the Ship class
from within the method fire. Edward is now interested in
Ship, so he selects that node. He finds that Ship is revealed
in all of the browsers, but once again he is drawn to the Class
Creation browser. There, he finds that Ship objects are cre-
ated in the Game class in a method called newShip(Pilot).
He looks at the code for this method and notices that the
object of type Pilot is passed into the Ship constructor as
an argument. He browses the Class Members browser un-
der Ship and finds that it has a field of type Pilot. He feels
that perhaps the argument to this method, which is of type
Pilot may also be useful to learn about, so he finds Pilot in
the Package Explorer and selects it. He finds this time that
his attention is drawn to the Type Hierarchies browser. He
notices that Pilot is an abstract class with two subclasses:
Player and Robot. He feels that he has now successfully
created a mental map of his task: when the field pilot of
class Ship is of type Player and the method fire is called,
the sound should be played. Edward inserts a method call
at this point, using an instanceof test for Player, and then
plays his game.

5. IMPLEMENTATION

JQuery was developed as an Eclipse plugin. It uses the
TyRuBa[7] query language as a back-end for parsing Java
files, building menu options and querying/updating the database.
JQuery is written in Java and comprises 45 classes and about
3500 lines of code. Approximately 600 lines of code were
modified or added to version 1.02 of JQuery to implement
the mulitple views. To synchronize the views, JQuery with
Multiple Views generates and performs a query on each of
the views. Each node that is returned is then found in the
tree hierarchy and updated to the current color.

We felt that it was important to involve the query engine
rather than simply scanning a tree for items with the same
name as the chosen node for two reasons. Firstly, using this
method we are assured to retrieve only nodes that match
in identity as well as name. If we were scanning the tree
alone there is a possiblity of incorrectly selecting a node
with the same name but a different identity than the current
selection. Secondly, by using TyRuBa as a back end for these
views we have allowed space for future modifications of the
tool. Some of these will be discussed in the future works
section.

6. RELATED WORK
There are currently many tools that use linked or filtered
views to protect the developer from the disorientation caused
by an information overflow. This section will focus on the
most relevent of these and compare the methods they use
to JQuery with Multiple Views.



Figure 3: Edward’s Browser

The FEAT tool[6] allows the developer to iteratively define
the set of all code elements relevent to a feature the devel-
oper is interested in. FEAT allows the developer to use a
set of pre-defined linked views - the most dominant of which
are the Participants and Projections, to incrementally map
out all the code relating to a specific concern. The devel-
oper begins with empty views and must explore the code
using fan-in and fan-out queries available in the Projec-
tions view. Each time the developer is able to identify an
element pertinant to the concern, he can add it to the Par-
ticipants view. When the developer has fully mapped out
the concern in these views, he can use the information con-
tained within them to make changes to the code. JQuery
with Multiple views differs from FEAT in the way that the
developer uses the tool. JQuery with Multiple views does
not build an explicit map of the concern. Rather, our tool
is meant for exporatoring the code and making incremental
changes as the user explores. Our tool therefore allows fully
adaptable views, whereas the FEAT tools were designed and
pre-defined for the purpose of the concern mapping.

Mylar[3] is similar to JQuery with multiple views because of
it’s use of color to link views and the dynamic quality of its
browsers. Unlike JQuery with MV however, the browsers
react as a side-effect to the developers exploration of the
code. As the developer explores code using any of the views
(including searching for specific code elements or viewing
code errors), a Domain of Interest model is built and main-
tained, and the views are synchronized to this model. Using
JQuery with MV, this task is more explicit. The code the

developer is interested in is shown in the Active Query view
as query results, and the contextual views react to the set
of elements the developer selects in this view.

The Java Browser perspective of Eclipse has a very effective
set of linked views. This perspective uses a set of pre-defined
linked views that give the developer a structural understand-
ing of the code he is working with. The method that the
perspective employs is pure filtering. The views presented
to the developer are the projects view, the package view,
the type view and the members view. Since the informa-
tion contained within the views is hierarchical across views,
if the developer selects an element in any of the views, all
child views are updated to reveal the members contained
within that element. For example, a developer selecting a
type in the type view will find that the members view is
updated to show all members contained within the selected
type. Although the nature of this set of browsers is similar
to that of JQuery with Multiple Views, the user is unable
to create new browsers, or to query the elements contained
within any of the browsers.

7. LESSONS LEARNED
The central lesson we learned through our experience devel-
oping JQuery with Multiple Views was that color was not
an appropriate method of linking the views. Because a user-
defined browser can contain many occurances of the same
node, it was often the case that a selected node matched too
many nodes in the other views for the developer to quickly
gain any useful information. The effect of so many nodes



changing color simultaneously across the screen appeared
disorienting as well.

We believe the most useful manor of addressing this issue
would be to link the views by filtering the amount of infor-
mation shown in each view as they are synchronized. As an
intermediate step that would require no additional coding,
we believe our choice of colors could be greatly improved.
We believe that less jarring colors would allow the developer
to see the highlighted nodes without distracting him from
his current task. A currently available tool that offers a
customizable combination of shading and highlighting with
color is Mylar.

Our project would have been more successful if we had used
a more iterative, user-centered design process. Although we
were able to consult with both a JQuery developer and an
expert user, we were unable to show either of them a low or
high fidelity prototype until we had reached our development
deadline.

8. EVALUATION
We have successfuly built an Eclipse 3.0 compatible version
of JQuery with Multiple Views. Due to some limitations
we discuss in the following section, we do not believe the
current version of our tool is a practical alternative for most
developers. However, we do believe it may be very useful
as a research tool. Many software tools offer synchronized
browsers to assist the developer, but none allow the devel-
oper such a great deal of freedom in creating browsers. As
we discuss in our future work section, we plan to place the
tool in the hands of experienced JQuery developers and see
what types of multi-dimensional browsers they invent to fit
their various needs.

8.1 Strengths
JQuery with Multiple Views has leveraged the powerful back-
end database of JQuery to allow the developer a freedom in
creating browsers that no other tool allows. The process of
creating and linking views using our tool was designed to
be intuitive to a JQuery user. Additionally, the interface
for creating a browser was taken from the original version
of JQuery, which involves writing a query and ordering the
bound variables. To link the browsers the developer simply
needs to double click on any node.

The inherently adaptable qualities of JQuery are carried
over to JQuery with Multiple Views. Using our tool, a de-
veloper is able to create browsers that span any number of
dimensions he wishes. For expample, using the Eclipse Java
Browser, the user is able to make use of a Types browser and
a members browser. A developer exploring a system with
JQuery with Multiple Views may wish to compound these
views to create a single browser that contains all types with
child nodes representing all members of a selected type. This
may become useful when a developer who is using the Ac-
tive Query window to explor type relationships in the system
also wishes to see the members of any type he finds.

With these characterisics, we believe that JQuery with Mul-
tiple views may be very useful in many domain specific tasks.
For example, when exploring a distributed system, the de-
veloper may wish to browse through co-located code, but

to be informed (via a browser in a separate view) when a
method he is exporing contains calls to middleware or across
the network. Further research must be conducted before we
can fully comprehend the practical applications for our tool.

8.2 Weaknesses
Although JQuery with Multiple views appears to be quite
useful, we believe it can be improved upon. We noticed two
major weaknesses with the current design. Firstly, using
color to synchronize views does not appear to be effective
enough. Although the colors to appear to grab the devel-
opers attention, it may often be disorienting when the same
color appears in multiple places both within browsers and
across views. We believe that a new synchronization method
may be necessary. One possible solution to this problem in-
volves filtering the nodes displayed in each browser. This
idea is further explained in the future work section.

Secondly, we believe that the user interface for the views
should be more adaptable to fit the developers needs. The
developer can currently control the layout of the views by
adjusting the number of views, the size of the views, and
what browsers are contained within the views. The opera-
tions available to the developer are to synchronize the views
by up to five nodes, to de-synchronize all of the nodes in all
of the views at once, and to query on any node in the Active
Query browser. We believe that although these are all useful
features, we must add to them before JQuery with Multiple
Views can become a practical alternative for developers. We
plan to allow the developer more freedom in controling the
layout of the views - through a drag and drop mechanism
that is currently supported in many other Eclipse views.
Additionally, we noticed that JQuery with Multiple Views
tends to use a great deal of screen real-estate. We believe
a minimize option for views may help the developer free up
some space for the code editor. We also felt a weakness in
our design to be that we only allow the developer to desyn-
chronize all the nodes at once. This feature does not appear
to match well with the way developers use JQuery - making
educated guesses via queries that often do not yield useful
results. We believe that it would have been a better design
to allow the developer a way to de-synchronize each node
separately from the others.

9. FUTURE WORK
There are three areas of our JQuery with Multiple Views
project that we believe need future work. Firstly, we believe
it is necessary to conduct some more formal user studies on
the tool. For our purposes, it would be most interesting
to see if the developer utilized the multiple views feature
to complete a task, as well as what types of browsers were
created. To keep our study focused on the information vi-
sualization and not the query language, we believe the test
subjects would need to have a working knowledge of JQuery
and Java. As a secondary objective of the study, it would
be interesting to note how many views the deveolopers keep
open concurrently, and the size and positioning of the views.

Currently, JQuery with Multiple Views is still succeptible
to the negative effects of Explosion of Browsers, including
loss of context and disorientation while switching between
views. To further combat this issue, we plan to draw further
from principles of the Java Browser perspective. With this



perspective, when a selection in made in one browser, the
other browsers are filtered to show only information directly
related to that selection. For example, if a class is selected
in the class browser, the method browser is updated to show
only methods contained within that class. This helps to re-
tain context for the user while browsing, since no informa-
tion not directly related to that class is shown. Something
similar to this feature could be built directly into JQuery
with Mulitple views by allowing a view to base the infor-
mation shown in its browser on a pointer to the currently
selected node in any of the other views. With this new fea-
ture, a set of browsers could be created within JQuery with
MV that match exactly with the Java Browser perspective.
Additionally, the user could build these browsers to show
information indirectly related to the selected node. For ex-
ample: each time the user selects a class in the Active Query
view, a browser in a separate view could reveal all subclasses
of that class that override one of it’s methods. Such infor-
mation is extremely difficult to find using the browsers of the
Java Browser perspective of eclipse and could be extremely
useful to the developer in many routine maintenence tasks
such as tracking down a bug.

And thirdly, although we have not discussed the issue of
building queries in this paper, we believe a great deal of
work must be put into finding a more suitable user interface
for this vital part of JQuery. Currently, the novice user
can use JQuery without writing queries because the tool
comes prepackaged with many queries that the developers of
JQuery thought would be useful. If the user wants to express
new queries, however, it is necessary for him to open the
source of JQuery and learn by example from the queries that
currently exist. This often tedius and error prone process
could possibly turn users away from JQuery with Multiple
Views.

10. CONCLUSION
In this paper we have introduced JQuery with Multiple
Views, a version of JQuery which we implemented to ad-
dress the lack of contextual information present in a query
path. Our tool allows the developer to create multiple views
which present additional information to the developer on
how a selected node fits into the system. We leveraged the
logic language TyRuBa as a means of creating the additional
views and also synchronizing the views.

We used color as a means for synchronizing the views. Our
tool provides five colors Blue, Green, Grey, Magenta and
Yellow which we felt provided enough contrast to one an-
other to allow the developer to quickly view all matching
nodes. Any node selected by the developer (by double-
clicking) will take on one of these colors, and any node in the
other views that matches it will automatically be revealed
and highlighted by the same color.

As we discussed, we do not believe our tool is ready for
practical use in development but we feel that it may serve
as a starting point for experimenting with domain specific
browsers. As a starting point, we will experiment in the
distributed sytems domain, where functional and systemic
code can be developed separately yet simultaneously. As for
the immediate future, we believe it will be necessary to re-
implement the synchronization mechanism to work by filter-

ing uninteresting nodes rather than coloring the interesting
ones.

11. REFERENCES
[1] Eclipse home page. http://eclipse.org/.

[2] D. Janzen and K. DeVolder. Navigating and querying
code without getting lost. In AOSD, Boston, MA, USA,
2003. UBC, ACM.

[3] M. Kersten and G. C. Murphy. Mylar: a
degree-of-interest model for ides. In AOSD ’05:
Proceedings of the 4th international conference on
Aspect-oriented software development, pages 159–168,
New York, NY, USA, 2005. ACM Press.

[4] G. E. Krasner and S. T. Pope. A cookbook for using
the model view controller user interface paradigm in
smalltalk-80. In Journal of Object-Orientated
Programming, volume 1, pages 26–49,
August/September 1988.

[5] E. McCormick and K. D. Volder. Jquery: finding your
way through tangled code. In OOPSLA ’04:
Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems,
languages, and applications, pages 9–10, New York,
NY, USA, 2004. ACM Press.

[6] M. P. Robillard and G. C. Murphy. Feat: a tool for
locating, describing, and analyzing concerns in source
code. In ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering,
pages 822–823, Washington, DC, USA, 2003. IEEE
Computer Society.

[7] TyRuBa home page. http://tyruba.sourceforge.net/.


