Focus+Context

Lecture 13 CPSC 533C, Fall 2004

1 Nov 2004

Focus+Context

Leung and Apperly taxonomy

A Review and Taxonomy of Distortion-Oriented Presentation Techniques. Y.K. Leung and M.D. Apperley, ACM Transactions on Computer-Human Interaction, Vol. 1, No. 2, June 1994, pp. 126-160. [http://www.ai.mit.edu/people/jimmylin/papers/Leung94.pdf]

Nonlinear Magnification Fields

Nonlinear Magnification Fields. Alan Keahey, Proc InfoVis 1997 [http://citeseer.nj.nec.com/keahey97nonlinear.html]

2D Hyperbolic Trees

The Hyperbolic Browser: A Focus + Context Technique for Visualizing Large Hierarchies. John Lamping and Ramana Rao, Proc SIGCHI '95. [http://citeseer.nj.nec.com/lamping95focuscontext.html]

3D Hyperbolic Graphs

H3: Laying Out Large Directed Graphs in 3D Hyperbolic Space. Tamara Munzner, Proc InfoVis 97 [http://graphics.stanford.edu/papers/h3/]

TreeJuxtaposer

TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with Guaranteed Visibility. Munzner, Guimbretiere, Tasiran, Zhang, and Zhou. SIGGRAPH 2003. [http://www.cs.ubc.ca/~tmm/papers/tj/]

hyperbolic geometry background, if time

Intuition

move part of surface closer to eye

stretchable rubber sheet borders tacked down

merge overview and detail into combined view 3

Bifocal

transformation

magnification

Perspective Wall

transformation

magnification

Polyfocal: Continuous Mag

transformation m

Fisheye Views: Continuous Mag

transformation

magnification

1D

Multiple Foci

same params

diff params

polyfocal magnification function dips allow this

Nonlinear Magnification Functions

transformation

distortion

magnification

derivative of transformation

directionality

- easy: compute transformation given magnification derivative
- hard: compute magnification given transformation integration

new mathematical framework

- approximate integration, iterative refinement
- · minimize "error mesh"

Expressiveness

magnification is more intuitive control

· allow expressiveness, data-driven expansion

2D Hyperbolic Trees

fisheye effect from hyperbolic geometry

3D Hyperbolic Graphs: H3

task

· browsing large quasi-hierarchical graphs

[Munzner 1997, 1998a, 1998b]

Previous work: graph drawing

scalability bottleneck layout avoiding disorientation

Previous work: graph drawing

Previous work: graph drawing

scalability bottleneck layout avoiding disorientation

H3 [Munzner 97,98]

Gem3D [Frick et al 95]

dot [Gansner et al 93]

minimize

· crossings, area, bends/curves

minimize

· crossings, area, bends/curves

maximize

· angular resolution, symmetry

minimize

· crossings, area, bends/curves

maximize

angular resolution, symmetry

most criteria NP-hard

· edge crossings [Garey and Johnson 83]

minimize

· crossings, area, bends/curves

maximize

angular resolution, symmetry

most criteria NP-hard

edge crossings [Garey and Johnson 83]

incompatible

· [Brandenburg 88]

Layout

problem

· general problem is NP-hard

Layout

problem

general problem is NP-hard

C G E

solution

- · tractable spanning tree backbone
- · match mental model "quasi-hierarchical"
- use domain knowledge to construct select parent from incoming links

Layout

problem

general problem is NP-hard

C G E

solution

- · tractable spanning tree backbone
- · match mental model "quasi-hierarchical"
- use domain knowledge to construct select parent from incoming links
- · non-tree links on demand

Avoiding disorientation

problem

- maintain user orientation when showing detail
- hard for big datasets

exponential in depth: node count, space needed

global overview

local detail

Overview and detail

two windows: add linked overview

cognitive load to correlate

solution

- merge overview, detail
- · "focus+context"

Previous work: focus+context

fisheye views [Furnas 86], [Sarkar et al 94]

Previous work: focus+context

fisheye views [Furnas 86], [Sarkar et al 94] nonlinear magnification [Keahey 96]

Previous work: focus+context

fisheye views [Furnas 86], [Sarkar et al 94] nonlinear magnification [Keahey 96] pliable surfaces [Carpendale et al 95]

Previous work: focus+context trees

H3 [Munzner 97,98]

28

Previous work: focus+context trees

Previous work: focus+context trees

Hyperbolic space background

geometry with exponential "amount of room" good match for exponential node count of trees

2D hyperbolic plane

[Thurston and Weeks 84]

hemisphere area

hyperbolic: exponential $2\pi \sinh^2(r)$

euclidean: polynomial $2\pi r^2$

hyperbola projects to line

hyperboloid projects to disk

hyperboloid projects to disk

3-hyperboloid projects to solid ball

3-hyperboloid projects to solid ball

webviz [Munzner and Burchard 95]

- straightforward cone tree + 3D hyperbolic space
- poor information density

Contribution: focus+context graphs

3D hyperbolic space

3-hyperboloid projects to solid ball

H3 layout

· circumference -> hemisphere

3D hyperbolic space

3-hyperboloid projects to solid ball

H3 layout

- bottom-up: allocate space for nodes
- · top-down: place child on parent hemisphere

Formula	Euclidean	Hyperbolic
right-angle triangle	$ an heta = rac{opp}{adj}$	$ an heta = rac{ anh(opp)}{\sinh(adj)}$
right-angle triangle	$\sin \theta = \frac{opp}{hyp}$	$\sin\theta = \frac{\sinh(opp)}{\sinh(hyp)}$
circle area	πr^2	$2\pi(\cosh(r)-1)$
hemisphere area	$2\pi r^2$	$2\pi \sinh^2(r)$
spherical cap area	$2\pi r^2(1-\cos\phi)$	$2\pi \sinh^2 r(1-\cos\phi)$

Progressive rendering

want fast update during user interaction

· fill in details when user is idle

problem

dataset too big to draw in single frame

solution

guaranteed frame rate algorithm

progressive refinement

- gradually improve image vs. standard Z-buffer
- common in graphics [Bergman et al 86]
- far less attention in infovis

H3Viewer algorithm

drawing queue for nodes

graph-theoretic

· add parent, child nodes to queue

view-dependent

· sort queue by screen area

H3 video (excerpts)

H3 results

scalability

- performance
- · information density

H3 results: scalability

performance

- layout
 110K edges, 12 seconds (1997: SGI IR2)
 300K edges, 16 seconds (2002: Intel P3)
- drawing constant time: guaranteed frame rate
- · limited by main memory size

H3 results: scalability

information density: 10x better

H3 2D PARC Tree

	center	fringe
3D	dozens	thousands
2D	dozens	hundreds

H3 discussion: scalability

focus+context layout

- · success: large local neighborhood visible, 5-9 hops
- · cognitive limit: if graph diameter >> visible area

TreeJuxtaposer

extend cognitive limit

· move from local F+C to global F+C

Noneuclidean geometry

Euclid's 5th Postulate

· exactly 1 parallel line

spherical

- geodesic = great circle
- · no parallels

hyperbolic

· infinte parallels

[torus.math.uiuc.edu/jms/java/dragsphere]

Parallel vs. equidistant

euclidean: inseparable

hyperbolic: different

Exponential "amount of room"

good match for exponential node count of trees

2D hyperbolic plane embedded in 3D space

[Thurston and Weeks 84]

hemisphere area

hyperbolic: exponential $2\pi \sinh^2(r)$

euclidean: polynomial $2\pi r^2$

Models, 2D

not just round!

Klein/projective

Poincare/conformal

Upper Half Space

Minkowski

[www-gap.dcs.st-and.ac.uk/~history/Curves/Hyperbola.html] [www.geom.umn.edu/~crobles/hyperbolic/hypr/modl/mnkw/]

the hyperboloid itself embedded one dimension higher

1D Klein

hyperbola projects to line

2D Klein

hyperboloid projects to disk

[demo: Geomview]

[video: www.geom.umn.edu/~crobles/hyperbolic/hypr/ibm/mkb/M2K.mpg]

[graphics.stanford.edu/papers/munzner_thesis/html/node8.html#hyp2Dfig]

Klein vs Poincare

stereographic projection

- · transparent sphere
- · plane at south pole
- · light at north pole

[demo: torus.math.uiuc.edu/jms/java/stereop/]

transformation from Klein to Poincare

- vertically project disc to hemisphere
- stereographically project hemisphere to Poincare disc

[video: www.geom.umn.edu/~crobles/hyperbolic/hypr/ibm/mkb/K2P.mpg]

graphics

- Klein: 4x4 real matrix
- Poincare: 2x2 complex matrix

Upper Half Space

"cut and unroll" Poincare

· one point on circle goes to infinity

[demo: www.geom.umn.edu/~crobles/hyperbolic/hypr/modl/uhp/uhpjava.html

Models, 3D

[http://graphics.stanford.edu/papers/webviz/]

- Upper Half Space
- Minkowski

3D Insider

insider: camera also moves by hyperbolic rules cool, but limited visibility

[demo]

3D Klein

3-hyperboloid projects to solid ball

3D Minkowski

3-hyperboloid embedded in 4D space light cone: special relativity

· diagrams in 2D for clarity

timelike: inside cone, speed < c

lightlike: on cone, speed = c

spacelike: outside cone, speed > c

· can't affect

[appletree.mta.ca/courses/physics/4701/EText/LightCone.html]