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Perceptual and Interpretative Properties
of Motion for Information Visualization

Lyn Bartram




Motivation

+

m Current interfaces exceed the human’s
perceptual capacity to interpret them

m Motion is a perceptually rich and

efficient display mechanism, but little
research has been done to determine
how well it can display abstract data




Difficulties In visualizing
information

m Large amount of data requires a lot of
screen real estate, as well as coordination
between multiple windows

m Dynamic nature of data requires users to
notice changes

m Some data appears in multiple parts of the
visualization system, requiring users to
assimilate the 'big picture’ in their heads




Graphical representations

+

m Shape, symbols, size, colour and
position are ‘'mentally economical’

m But, as the amount of data we want to

visualize increases and as the size of
the screen we are using increases,
more attention needs to be paid to
improving ‘information bandwidth’




Motion

m Can motion be used to encode abstract
data?

— Motion is perceptually efficient and is becoming
more technologically practical

— Visual system is pre-attentively sensitive to
motion across the entire visual field

— Humans can pre-attentively track up to five
objects in motion at the same time

— By nature uses very little extra screen space

— Can be ‘layered’ with existing representations to
increase the dimensionality




Grouping
+

s Humans perceive groups when they
see multiple object moving in the
same manner

— This could be useful for denoting group
membership for objects that are not
spatially close

— Could be useful for temporal as well as
spatial groups




Future Directions

+

m Conducting experiments into simple
motion and types of patterns for
grouping and association cues

m How can motion convey relationships
such as dependency and causality?




Critique
+

m Interesting idea

m Builds well on information that is known
about the human perceptual system

m [ am not convinced that motion is a
reasonable way of increasing displayed
dimensionality.
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Internal vs. External Information in
Visual Perception

Ronald A. Rensink




AMELRTK]y

m We often feel that we must have a
strong internal representation of all
the objects we can see

m Several experiments have argued
against this

m Attention is required to create a ‘stable
object representation’




Change blindness

+

m Subjects have difficulty noticing the
changes that are made between the
Images

m General phenomenon and can be
induced many ways

m Examples




Coherence theory

+

m Low level proto-objects are continually
formed, without attention.

m Focused attention selects a small

number of proto-objects, based on a
feedback loop called a coherence field.

m Proto-objects lose their coherence
after focused attention is released.




Coherence theory

+
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Figure 2. Coherence Theory, Earlyv-level processes create
proto-ohjects rapidly and in parallel  across the visual feld.
Focused attention "gcrabs™ these volatile proto-objects and
stabilizes them. As long as the proto-objects are held  in a
coherence field, they form an individuated object with both
temporal and spatial coherence 171




Virtual Representation

+

m Only create a detailed representation
of the object being attended

m If these detailed representations can

be created whenever needed, the
scene representation will appear “real”
to the higher levels, but with huge
computational savings




Triadic architecture

3. Betting (nonattentional) 2. Object (attentional)

Coherent
objects

1. Eary-level (nonattentional)

Figure 3. Triadic Architecture. Visual perception may be
carried out via the interaction of three systems. (1) Early-
level processes create volatile proto-objects. (1) Focused
attention acts as a hand to "grab”™  these stroctures and form
an ohject with both temporal and spatial  coherence.  (3)
Setine information obtained via @ nomnattentional
stream guldes the allocation of focused attention. |7)




Implications for displays

+

s How can we create visual output that best
match the type of information pickup
described in coherence theory?

m We can determine the order in which
aspects of a scene are attended to, and use
that information to select what to render

m There are limits on what the user will
perceive, which is important if the change
itself was an important part of the
visualization




Visual transitions

Humans may miss transitions, which could
e an advantage or a disadvantage

User interfaces could attempt to take
advantage of change blindness so that their
transitions were invisible

m Displays should minimize

— the number of dynamic events occurring in the
background

— the number of saccades




Attentional coercion

+

m Magicians have been using this for
centuries

m By controlling what people are paying

attention to you can control what they
see

m A coercive display could ensure that
Important events are seen




Critique

+

m Good descriptions of the different
ways we visually perceive information

m The figured aided my understanding of

coherence theory and triadic
architecture

m | wanted to read about some real
examples of coercive displays




Level of detail: Varying rendering fidelity
by exploiting human change blindness.

Kirsten Cater, Alan Chalmers and Colin
Dalton




Motivation

+

m Most virtual reality environments are
too complex to be rendered in real
time

m Change blindness can be exploited to
shorten rendering times without
compromising perceived quality




Change blindness

‘the inability of the human eye to detect
what should be obvious changes’

If attention is not focused on an object in a
scene, changes to that object may go
unnoticed

Occurs because our internal representation
of the visual world is sparse and only
contains objects of interest




Visual Attention

+

m Spatial acuity is highest at the centre
of the retina, the fovea

m Visual angle covered by the fovea is

approximately 2 degrees

— Saccade: moving the next relevant object
into the focus of the fovea




Background

+

m O'Regan et al.’s flicker paradigm, and
mudsplash paradigm

— Marginal interest vs. Central interest

m Peripheral Vision

— Human eye only processes detailed
information from a small part of the
visual field




Experiment

+

m 24 images, aspects of the images were
labeled Central interest or Marginal
Interest

m Principles of the flicker and mudsplash
paradigms were used, but the image
was rendered differently each time
instead of using photographs




Experiment

+

m Rendering quality was a factor

— High resolution images took
approximately 18 hours to render

— Low resolution images took
approximately 1 minute to render




Results

m Subjects took significant amounts of time to
notice the changes in the images

m Modified central interest aspects were found
faster than modified marginal interest
aspects

m Subjects were much slower to recognize
rendering changes compared to location or
presence changes




Conclusions

+

s Computational savings could be
dramatic

m [nattentional blindness is the failure to
see any unattended objects




Critique

m Change Blindness occurs in computer
graphics images as it does in real life’
— seemed obvious to me

m Didn’t give any specific guidelines on
how to exploit Change Blindness in
software applications




Face-based Luminance Matching for
Perceptual Colormap Generation.

Gordon Kindlmann, Erik Reinhard, and
Sarah Creem




Luminance

+

m Luminance is a very important aspect of
visualization because it affects our
perception of image structure and surface
shape

m 3 issues with using luminance in colormaps
— Uncalibrated displays

— Lighting conditions of the room are unknown

— Yellow pigments can cause non-trivial
differences




Luminance efficiency
function

m Describes the sensitivity of the eye to
various wavelengths

m Many of the techniques to measure
the luminance efficiency function are
based on matching

m Goal is to create a task similar to the
minimally distinct border method that
IS easier for users




Method

e One face appears
‘positive” while the other
appears ‘negative’

e Black is replaced by
gray and white is
replaced by a colour

Figure 1: Double face image







User study
+

s Compared MDB to face based
luminance matching

m No significant difference by task, but

face based luminance matching was
more precise than MDB




Colormap generation

+

m Need to create the
hues in between
the 6 that were
matched by

interpolation

m Used data from the
user StUdy luminance matching data from participants #9 (top) and #10 (bot-

Figure 10: “Isoluminant™ colormaps generated from the double face

tom).

averaged over all
participants and
trials




Critique
I .
m Interesting idea

m Succinctly explained the background
information and related work

m Well designed user study, with good
hypotheses




Large datasets at a glance: Combining
Textures and Colors in Scientific
Visualization.

Christopher G. Healey and James T.
Enns




Objective

+

m To create a method to display complex
and large data sets that encode
multiple dimensions on a single spatial

point
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Bottom up vs. top down

+

m Bottom up: the limited set of features
that psychologists have identified as
being preattentive

m Top down: attention is controlled by
the task you are attempting to
perform




Pexels

m Multicolored perceptual texture elements

(pexels) are used

m Pexels have differing height, density,

reqgularity and color

m Goal: select texture anc
that allow for fast visua

color properties
exploration, while

minimizing interactions
features

hetween the visual




Experiments

+

m Can density, regularity and height be
used to show structure?

m How can we use the dataset’s

attributes to control the values of each
perceptual dimension?

s How much visual interference occurs
between the perceptual dimensions?







Results

+

m Taller regions were identified very
quickly
m Shorter, denser, and sparser targets

were more difficult to identify than
taller targets, although some good
results were still found

m Background variation produced small,
but statistically significant interaction
effects 7




Results

+

m Irreqgular targets were difficult to
identify

m Poor detection results for regularity

were unexpected




Perceptual Colors

+

m Desighed experiments to select a set
of n colors such that

— Any color can be detected preattentively

— Every color is equally easy to identify

m Tested for the maximum number of
colors that can be displayed
simultaneously while satisfying the
above requirements




Color

+

m Color distance

— Colors that are linearly separable from
one another are easier to distinguish

m Color category

— Colors that are in different named
categories (such as purple and blue) are
easier to distinguish




Experiment

+

m First experiment
controlled color
distance and linear

separation but not
color category

m 4 studies that
displayed 3, 5, 7
and 9 colors
simultaneously




Results

+

m All targets were detected rapidly and
accurately when 3 and 5 colors were
displayed

m With 7 and 9 colors, the time to detect
certain colors was proportional to the
display size

m Is this due to color categories?




Color category
experiment

m Subjects were asked to describe colors

m The amount of overlap between the
names was used to determine
‘category overlap’

m Category overlap was a good indicator
of performance




Texture and Color

+

m Do variations in pexel color affect the
detection of targets defined by height
or density?

m Do variations in pexel height of density
affect the detection of targets defined
by color?




Examples
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Results

+

m Background variation had no effect on
detection of color targets.

m Detection accuracy for height and density

targets was similar to results from the
texture experiments

m Background variation in color had a small
but statistically significant effect

m Denser and taller targets were easier to
recognize




Practical applications

m Visualizing typhoons
— Windspeed (height)
— Pressure (density)
— Precipitation (color)




Conclusions

m Data/feature mapping must match
with the workings of the human visual
system

m Color distance, linear separation and
color category must all be considered
when choosing colors

m Results were validated when applied
to real world data




Critique
+

m Thorough experiments

m Pexels only allow 3 dimensions to be
displayed

m No guidelines about how to map your
data to the representations
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