
NAV - Network Analysis Visualization

Meghan Allen∗ Peter McLachlan†

University of British Columbia
Department of Computer Science

ABSTRACT

In this paper we discuss the Network Analysis Visualization (NAV)
project, a tool for investigating high level network events. Moni-
toring network activity has been a critical task for administrators
since networks were first introduced, both for maintaining system
security and tracking resource utilization. Traditionally, the tools
used by both enterprise and home users display detailed packet in-
formation in a scrollable text list. Although these interfaces provide
fine grained details, it is very difficult to quickly obtain a high level
understanding of the nature of the traffic. The Network Analysis
Visualization project attempts to address this problem by using in-
formation visualization techniques to display packet trace data from
a common log format. Overview with details on demand is used to
provide different levels of viewing data, brushing and linking al-
lows the user to select information for more detailed investigation
and log scales are used where possible to allow data to span large
ranges. Dynamic filtering allows the scope of data being displayed
to be modified in real time, enabling the visualization to scale to
large data sets.

CR Categories: H.5.2 [User Interfaces]: Graphical User Inter-
faces (GUI); C.2.3 [Network Operations]: Network monitoring

Keywords: network traffic analysis, information visualization,
system administration, brushing, trellis, security, networks

1 INTRODUCTION

Internet communication has undergone dramatic growth in the past
decade; almost all organizations make use of networking technol-
ogy and the reach of computer networks has grown into the home
with as many as 64% [25] of Canadians having home internet ac-
cess with nearly two thirds of them accessing the internet via broad-
band [5]. As the volume of traffic travelling over the network in-
creases, traditional network monitoring tools can no longer provide
a good overview of the traffic patterns. These tools typically dis-
play every packet which is transmitted or received in a textual list.
Although these interfaces provide fine grained details and allow ad-
ministrators to drill into the packet contents, useful information can
be obscured by the technical nature of the format and the sheer vol-
ume of information. Providing a high level visual means of brows-
ing and filtering the data set allows the user to more easily detect
information that may be of interest and obtain further details on
demand.

Monitoring network activity has been an important pursuit for
administrators since networks were first introduced. Most adminis-
trators have at least a few different means of monitoring traffic both
’on the wire’ and for analyzing packet capture log files. This is
typically a suite of non-integrated tools which provides them with

∗e-mail: meghana@cs.ubc.ca
†e-mail:spark343@cs.ubc.ca

a variety of information. The use of a basic packet sniffer can
typically be assumed; tcpdump [12] represents an example of the
most primitive form of packet sniffer available, and is capable of
capturing traffic from network devices, performing basic filtering
activities, and outputting the data in ASCII format to the screen.
Although tcpdump may be used to perform physical packet cap-
ture, typically administrators prefer a more flexible means to view
and analyze network traffic in the form of a packet sniffer with a
graphical user interface. There are a wide variety of sniffers on
the market such as the open source Ethereal [6] or the commercial
product Sniffer Pro [20], and high priced hardware sniffing devices
such as Fluke [9]. However, as can be seen in the screenshot from
Ethereal in Figure 1, these devices are still providing the same basic
textual view of the data with a few added GUI features to make it
more accessible. Typically they provide the administrator with the
capability to apply additional static filters to the data set and offer a
more readable, scrollable means to view packet contents. However,
these types of applications do not include techniques to present an
overview of the data set nor do they have the capability to visu-
ally ’pop out’ important information. Although administrators find
many of these tools useful, they are still left adrift in a sea of data
with little context to assist with navigation.

Figure 1: Ethereal is an open source network packet sniffer.

In addition to packet sniffers, an experienced administrator is
also typically armed with a variety of auxiliary tools which are not
integrated with the packet capture application. These include In-
trusion Detection Systems (IDS) such as SNORT [23] that analyze
packet payloads and port activity to determine when a network at-
tack is taking place. The more simplified variety of these devices
only detect port scanning activity, while more advanced variants
provide alerts when one of a variety of known network attacks is
taking place. These tools can typically be configured to log hostile
payloads to a database. The database can then be monitored via a
console such as ACID [1] which has a mechanism to send alerts to
the administrator. A significant problem with these applications is
that the considerable amount of background scanning and low level
attacks performed by automated software running on compromised



hosts (also called ’zombies’) potentially leads to a large number
of false positives. Distinguishing a real directed attack from this
background activity becomes challenging for the administrator; if
too many alerts are received they may be ignored, but if the IDS is
tuned to ignore certain attacks the administrator could miss impor-
tant information. For example, a large scale increase in the number
of below threshold hostile payloads might be an early warning that
a directed attack was taking place, but might easily be ignored by
an IDS tuned to discard notifications of that payload type.

The objective of the Network Analysis Visualization (NAV)
project is to create a tool for visualizing network performance and
connectivity data, with a secondary goal of integrating a facility to
provide visual notification of hostile payloads for security aware-
ness. Networking involves many layers of protocols, from the phys-
ical layer through to the application. The focus of NAV is the most
commonly used protocols on the network and transport layer, with
particular attention to TCP/IP and the services that run on this pro-
tocol suite. By distilling important traffic data NAV is intended to
provide a useful complement to more typical sniffer interfaces, giv-
ing a higher level view of network activity.

2 RELATED WORK

There are a number of projects in the information visualization
space that have investigated the visualization of network data. Gen-
erally, these applications have focused on the security aspects of
network computing by displaying such information to an adminis-
trator as when a port scan is in progress, when alarms have been
triggered on an intrusion detection device or the source of hostile
packets.

Visual Information Security Utility for Administration Live (VI-
SUAL) [3] is a tool intended to help system administrators, par-
ticularly administrators of home systems, to rapidly perceive the
security state of their network. VISUAL uses the concept of divid-
ing network space into a local network address space and a remote
network address space (the rest of the internet). It uses data from
the log files of Ethereal [6] or tcpdump [12] to produce its visualiza-
tions. VISUAL provides a quick overview of the current and recent
communication patterns in the monitored network. As you can see
in Figure 2 a home and remote IP filter allows users to specify their
home and remote IP ranges. The grid represents home hosts; by
means of connection lines it is possible to see if a home host has
received a large number of external connections at any given time.
They can also see which single external host communicated with a
large number of internal hosts, which may be relevant to detect net-
work scanning activity. The amount of activity taking place relative
to the local network by means of an external host is represented by
the size of the external host box. The authors of the paper assert
their solution can scale to a size of approximately 2500 home hosts
and 10,000 external hosts.

PortVis [18] is a project that displays abstract security data. This
project attempts to address the problem of giving outside consul-
tants or security specialists access to corporate data, without en-
trusting them with information about the systems from which the
data was gathered. The idea is to present these outside entities with
data that is informative, but abstracted, to reveal as little informa-
tion about the actual underlying systems as possible. In particular,
information about the IP addresses of the hosts, labels, and network
security alarm information is obscured. Basic summary informa-
tion from each TCP port during a period of one hour is visualized
by the PortVis tool, the goal of the project is to detect large scale
security events while also allowing the identification of small scale
events for further investigation. As you can see from Figure 3, sev-
eral views of the data are made available to the user; key features
include an overview located on the top right, a large window which
represents port activity, and a number of detail windows to reveal

Figure 2: VISUAL is a tool to help administrators of home systems.

information about specific port activity. PortVis is focused on ana-
lyzing data from a single host at a time.

Figure 3: PortVis displays abstract security data.

The Spinning Cube of Potential Doom [16] is a network security
visualization tool; the objective was to visualize sensor data from a
large network and provide a complete map of internet address space
indicating the frequency and origin of scanning activity. For this
project a significant focus was to avoid creating another security vi-
sualization tool ’by security professionals for security profession-
als’ and to give even a naive user some idea of the frequency and
extent of network security threats. As you can see from Figure 4,
the cube colours dots of incomplete connections using a rainbow
colour map. Port scans appear in this visualization as lines, either
horizontal if it is a scan across hosts or vertical if it is a single host’s
port space.

NVisionIP [15] is a visualization tool intended to improve the sit-
uational awareness of security administrators. Users are presented
with a graphical representation of a class-B network and can choose
from a number of different views of the data including a Subnet by
Host grid based coordinate system, labeled clusters, and a treemap
view showing individual hosts where size is determined by relative
interest level of the given host.



Figure 4: The Spinning Cube of Potential Doom.

Although security is a concern for home administrators, home
firewalls such as ZoneAlarm [29], Linux routers or inexpensive
hardware routing and Network Address Translation (NAT) [8] de-
vices offered by a variety of manufacturers are very effective at
reducing this threat. A greater concern may be determining which
remote hosts are currently communicating with local machines as
well as monitoring the use of bandwidth, especially given that many
internet service providers have begun instituting bandwidth caps on
home users and are either charging additional fees to users who ex-
ceed these caps or cutting off their access entirely.

3 REQUIREMENTS

Requirements for our proposed system were generated based on
the experience of the authors with home system administration and
analysis of network sniffer traces in a corporate environment. These
experiences provided a good working foundation for determining
what tasks a visualization of network traffic needs to support. How-
ever, we also felt it was valuable to verify these intuitions with an-
other experienced administrator and an interview was performed to
get feedback on our ideas and to generate new suggestions.

3.1 User interview

We conducted a user interview to determine if our understanding of
the information that our tool should visualize was correct. We in-
terviewed a Computer Science professor with a background in dis-
tributed computing and networking, both as an academic researcher
and as a Chief Technology Officer in industry. Our user interview
helped support many of our intuitions about the data that our tool
should visualize; it was established that per-service traffic flows
were of the highest importance and that the user was less concerned
about the actual packet internals. Our design sketches were refined
from the feedback provided by this system administrator. Based on
this interview we developed several new ideas for our design in-
cluding using expanding bar graphs next to each IP address in the
wall view to signify the amount of traffic sent to that host.

3.2 Home users

Most users who have used a home firewall product such as
ZoneAlarm [29] are familiar with the number of unsolicited con-
nections received from the outside world. Users of these prod-
ucts may also have been surprised by the number of connections

initiated from their own computer to external hosts without their
knowledge. This information is very useful to a home administra-
tor for detecting malware or other malicious activity on their sys-
tem. ZoneAlarm presents a single dialog which vanishes after user
acknowledgement; however, this doesn’t provide an easy means for
the user to perform further investigation into the source and destina-
tion of this potentially surreptitious traffic. Building on our team’s
experience with these types of products, we felt an important re-
quirement was to provide a view that explicitly connected local and
remote traffic, distinguishing a strong boundary between the two.
Further, it was our experience that quantity of traffic can also be
a good indicator of a compromised host. Crackers frequently use
compromised ’zombie’ machines for a number of purposes such
as Distributed Denial of Service (DDOS) type attacks, distribution
hosts for illicit software, or relays for other illegal activity. All of
these involve the use of considerable bandwidth; from this infor-
mation it was felt that giving a user the means to detect large data
transfers, particularly in time ranges where they might not be ex-
pected, is critical for security awareness.

A home user may wish to monitor their network to determine the
amount of data being downloaded and uploaded, as well as what
services are using the most network bandwidth.

3.3 Corporate users

The needs of a corporate administrator do not differ dramatically
from the requirements of a home administrator although the vol-
umes of traffic may be on different scales. Corporate administrators
need to divide IP space into a ’local’ vs. ’remote’ topology, desig-
nated by the point of demarcation with the internet service provider
(ISP). Since Classless Inter-Domain Routing (CIDR) [22] has be-
come an Internet standard, small businesses can own as few as one
internet routable IP address up to as many as tens of thousands.
Often corporate users will only be interested in one subset of lo-
cal addresses at a time; for example it is common for businesses to
implement a ’demilitarized zone’ (DMZ) on which servers which
provide external services are placed. Although these servers are
typically protected by a firewall, they are also segregated from the
internal network by a separate firewall interface. Administrators
might be interested in what traffic is flowing through the DMZ; in
a corporation with a substantial internet presence or portal this may
represent the majority of their traffic. Alternatively, administrators
may be specifically interested in what traffic is not flowing through
the DMZ, especially if large transfers are not expected from exter-
nal hosts directly through the firewall to internal trusted machines.

Typically, an enterprise system administrator would like to know
which machines in the corporate network are being accessed, what
services on these machines are being used, and how much data is
being moved. An administrator may also be interested in seeing
patterns of accesses to local machines; for example, accesses from a
single remote computer to a sequential group of ports on a local host
may indicate a port scan is in progress. Usage spikes for unexpected
services can be an indicator that a compromise has taken place; for
example if a system typically dispenses web traffic but has a sharp
spike in ftp-data transfers, it may be an indication that the system
is being used as a cracker contraband distribution hub. Adminis-
trators actively monitoring the network may be interested in having
certain information pre-attentively ’pop out’, such as when packets
are transmitted containing known hostile payloads, which would
allow them to take immediate action against the originator.

4 SYSTEM DESIGN

We have determined that our solution should focus on the replay of
log files; the ability to capture live traffic is discussed in section 9.
Log files are obtained in a common format used by all applications



which have the open source pcap [26] library as their capture in-
terface. As an example, log files generated by Ethereal [6] or tcp-
dump [12] can be used. Because it is a feature of the pcap library to
provide a unified interface to reading in a log file or from a network
interface, extending the application to accept live data in real time
will require only a modest rewrite of some of the internal structures
and can be considered as a future expansion to the project.

When the log file begins, users are requested to provide a num-
ber of pieces of information to NAV including the time range for
the capture, an optional filter, and both the local network range and
mask. The pcap library implements a bit packet filter which ac-
cepts a filter definition in the form of a string that our application
passes from the user to the pcap library. More details about the
filtering capabilities are available in section 4.1.5. The local net-
work address and mask must be provided by the user in order for
the NAV application to determine which addresses represent remote
and local hosts; from a raw capture file there is no automated mech-
anism for making this distinction. The network address is specified
in standard internet ’dotted quad’ notation for IP addresses in the
form V.X.Y.Z where each of{V,X,Y,Z} are a decimal range be-
tween 0-255. Internally each of these ’octets’ is stored as an eight
bit integer and taken together form a thirty two bit unsigned integer.
The network mask is also provided in dotted quad format and when
translated to binary represents a mask of ones followed by zeros
that demarcate the bits specifying hosts on a subnet from the bits
specifying the network address. The network address is then de-
rived by taking any IP address inside of a subnet and applying the
’mask’ for that subnet which involves performing a bitwise logical
AND operation between the IP address and the netmask. Many sys-
tem administrators are familiar with, and still use, the much simpler
classful system of specifying internet addresses where the smallest
address space available was a ’Class C’ block of 253 usable ad-
dresses. However, Classless Internet-Domain Routing (CIDR) from
RFC 1519 [22] has been the standard for some time now and we felt
it was important to support more flexible IP range configurations at
the expense of the added complexity of requiring the user to specify
a full netmask. The user is free to specify an initial time range for
the log file that exceeds the actual duration of the log file; provid-
ing the ability to select a time range in the open dialog is provided
simply as a convenience if the user knows in advance a particular
time frame they are interested in.

We intend to provide two primary ’views’ into the data flow, a
service and an IP view. The IP centered model involves the cre-
ation of two IP ’walls’ of addresses with one side representing lo-
cal addresses and the other remote hosts. The local address range is
specified by the user of the application. Lines are drawn to connect
the local and remote hosts, with further information such as traffic
type encoded as line colour and line width indicating traffic volume.

Users can ’aggregate’ ranges of IP addresses to reduce the num-
ber of line crossings. Dynamic queries are implemented with the
use of a time slider to help users sort through the data. Filters are
applied to both views simultaneously, which allows them to further
reduce the number of crossings on the wall as well as simplify the
graphs in the services view. Overall the visual focus of the IP wall
view is to provide the capability to reduce edge crossings and pro-
vide a scalable visualization.

The services view is based on a trellis of 2D scatter plots or line
graphs. The trellis view is inspired by R. A. Becker’s The Visual
Design and Control of Trellis Display [4]. Each graph represents a
service; the x-axis is time and the y-axis is bytes/s of traffic. The IP
and services views can be brushed to display the packet detail in the
detail view. For example, if the user click and drags the HTTP line
graph onto the detail view, the detail view will display all the HTTP
traffic until the filter is reset or a different brushing operation takes
place. Similarly, dragging an IP from the wall view onto the detail
view ties the detail view to showing all packets from that specific

IP. One scalability enhancement that can be made to this view is to
allow portions of the time axis to ’stretch’ or ’compress’ through
user interaction allowing them to gain details on demand. If this
proves too problematic the user could be given the ability to ’pan’
through the time axis by scrolling left and right on the graph.

The two primary views were implemented vertically because the
’wall’ view was better suited to this orientation whereas the services
view could be laid out either way. The detail view benefits from a
horizontal orientation because it allows users to see all the details
from each packet without having to scroll horizontally. The hori-
zontal orientation of the detail view allows NAV to display packet
details without using much of the space which is beneficial to our
two main views.

4.1 Features

This section will discuss and describe all of the currently imple-
mented features of NAV. Unimplemented features will be detailed
in section 9.

Our default system displays the IP wall view on the left side,
the services view on the right side and the detail view in a frame
which spans the full width of the application frame across the bot-
tom. Each of these views is collapsible or expandable with a single
click. The proportion of the screen taken by each view is adjustable
by means of split pane sliders. When a log file is opened, users are
able to specify a filter at that time. We have selected 8 default Ser-
vices to display, which are web traffic (http), SSL encrypted web
traffic (https), FTP data (ftp-data), IRC (irc3), bittorrent activity
(bittorrent), Microsoft Messenger (msnp), email in the pop3 format
(pop3) and Kazaa file sharing (kazaa). These are user configurable,
which will be discussed below in section 4.1.8.

Figure 5: NAV Overview.

4.1.1 IP Wall View

The purpose of the IP wall view located on the center left frame
of the application is to provide information to the user about what
local and remote Internet Protocol addresses and ports are generat-
ing network traffic and to provide rapid visual feedback concerning
how much traffic is being transmitted between which hosts. When
the system is in playback mode it is possible to see new connections
being formed between IP:Port pairs, as well as new local or remote
addresses that are becoming active. The VISUAL project [3], as
discussed in section 2 uses a similar local and remote distinction.

In the IP wall view local addresses are placed on the left side of
the display and remote addresses are located on the right separated
from one another by a pair of lines that represent ’the wall’. This



design visually forms a barrier between the two types of addresses.
Connections are represented by coloured lines that connect a lo-
cal address to remote hosts. Initially only ten default services are
colour coded using a subset of Ware’s [28] twelve recommended
colours for use in colour coding (excluding black which is used to
denote uncoded services and white which is the background colour
of the display). The default services and colours are discussed in
section 4.1.2 and more details on colour selection can be found in
section 4.1.7. When a connection is established between an IP:Port
combination the section of the ’wall’ beside the IP label is also mod-
ified to show the colour of the connection. This helps to establish a
visual link between the IP label and the connection.

Figure 6: The IP wall view. The left list represents local addresses
and the right represents remote addresses. Connections are repre-
sented by coloured lines. Widgets are provided to allow ranges to be
collapsed and to disable visualization of connections associated with
a given element or range.

The wall view contains a number of key features to reduce the
number of edge crossing ’snarls’ that occur when there is a large
quantity of traffic being visualized. One of the most important fea-
tures is the ability to visually ’collapse’ a port or address range for
both local and remote hosts. Address ranges can be collapsed to a
single entry for a class A, B or C network address range, and indi-
vidual hosts can have all of their ports collapsed to a single entry
for that host. When a collapse takes place, all of the connections
that originated from ’child’ entries are moved to their parent rep-
resentative. One consequence of collapsing a large range of ports
or addresses is that multiple services are typically contained in a
single entry, but this information can no longer be clearly coded.
Possible solutions to this problem are discussed in the Future Work
section.

When a user is not interested in seeing the edge connections for
a given port, host, or a network class of hosts, the user can sim-
ply collapse up to the desired level and then click on a trigger on
the ’outside’ of the local or remote label to disconnect that address
from the wall. The result of this disconnection is immediately visi-
ble, providing important feedback to the user. The IP address label
slides to the left or right (depending which side it’s located on) in-
dicating it is disconnected from the wall, and all connections to that
object vanish. However, the wall section colouring remains as a vi-
sual indicator to the user as to which service type was connected to
that label.

The wall view is also intended to convey information about im-
portant events that have taken place on a connection between local
and remote entries. Although this feature is not fully implemented
by NAV at this time the underlying code to support this capability
has been integrated into the code base and possible future directions
are discussed in section 9.1.3.

Information about the amount of traffic between any two points
is encoded in the form of a horizontal bar that displays just above
the label for a given local or remote entry in the IP Wall View.
This bar uses a base two logarithmic scale, where the largest bar
indicates the IP that has transmitted the most traffic. Using a loga-
rithmic scale enables huge disparities in transfer rates to be distin-
guished, while still permitting an accurate comparison of smaller
transfers. If a linear scale were used a large download would result
in smaller transfers becoming too small to visibly compare, possi-
bly to the point of making them imperceptible. Users can tell at a
glance which local or remote addresses are responsible for the most
traffic on the network. When network ranges or ports are collapsed
all of the transfer statistics for those entries are aggregated into their
parent representative.

The IP wall view can quickly show users when a port scan has
taken place; the port scan is visible as a series of connections from
a single remote host to a series of ports on a local host. This vi-
sual technique allows NAV to show ’stealth’ syn scans as well as
regular port scans. During a stealth scan a tcp synchronize request
is made but the port scanner only responds with an RST (reset) re-
quest which in many cases avoids a log being kept of the connection
activity because a full connection is never established. An example
of a port scan can be seen in Figure 7.

Figure 7: A portscan taking place in NAV, a single remote system is
scanning a sequence of internal ports.

Although the wall view is provided in a scrollable region of the
screen to allow large quantities of data to be displayed it is intended
that users will use the ability to collapse and disconnect edges to
focus their attention on connections of interest. The rendering code
of the wall view is quite fast, with a worst case draw time bounded
by a single O(log n) binary search required to locate the far side of
a connection drawing, and of course by the speed of the Java draw
code itself. The draw code does not draw IP labels or calculate traf-
fic statistics for entries that are not currently visible on the screen.
In several tests the draw code scaled to hundreds of addresses with
thousands of connections with draw performance better than 40ms
on a 1.4ghz P4.

4.1.2 Services view

The services view shows the traffic for particular services over time.
The traffic corresponding to each service is shown in a separate
graph. If there is no traffic in the log file related to a selected ser-
vice, the graph is not shown. Currently, the services view only
displays the default or user selected services, so there may be ac-
tivity in the log file that is not displayed in the services view. The
services view has the ability to show up to twelve graphs at once.



The default number of graphs is eight, but this can be changed on
the Preferences dialog. The services that will be shown can also
be changed in the Preferences dialog, further information on the
Preferences dialog can be found in section 4.1.8.

Each service graph displays traffic to and from the local host(s)
on a specific port. We label each graph based on our best guess of
what service utilizes each port but as ports are not restricted to spe-
cific applications we cannot guarantee the accuracy of our labels.
Each graph only displays the section of time in which activity oc-
curred on that port. For example, if your log file was 20 minutes
long but FTP traffic only occurred in the last 5 minutes, the x-axis
of the ftp-data graph would only display the last 5 minutes.

The graphs in the services view can display either a linear, or
log based date axis. They use a linear date axis by default, but
this option can be toggled in the Preferences dialog. The log based
date axis was implemented to allow users to view log files with a
very large range of time values. The current implementation is a
first pass at solving this problem, but further work could be done to
improve the log based date axis.

Figure 8: The Service trellis graph view.

4.1.3 Open Dialog

Figure 9: The open dialog.

As can be seen in Figure 9 the open dialog provides text fields
and spinners to gather the minimum information necessary to be-
gin visualizing the data. Users can specify a beginning filter and a
time range at their option which may be able to perform an ’early

cut’ on the size of the data set being visualized. This information
is optional; the filter can be left blank and the spinners default to
a span of a year based on the current date. The local network ad-
dress, netmask, and the file name of the log file to be opened are the
only critical pieces of information in this dialog. Simple verifica-
tion checks for format correctness are performed before the log file
is loaded.

4.1.4 Detail View

NAV complies with Schneiderman’s ’overview, zoom and detail’
mantra [24] by providing a means to ’peer’ into the actual packet
data if they choose. Overview is provided by the IP Wall and ser-
vices views, and the ’zoom’ equivalent functionality is achieved by
narrowing the time slice displayed using the time filter discussed in
section 4.1.6. Details are available by means of the detail view that
is located at the bottom of the screen. This view is initially empty,
but users can drag and drop to the detail view from either the IP wall
view or the services view to populate it. From the wall view, users
can drag an IP address label to the detail view, which will cause the
detail view to display all packets to or from that IP address. From
the services view, the user can drag one of the graphs to the de-
tail view which will cause the detail view to show all packets to or
from that port number. The detail view contains a label which de-
notes the IP address or port number that the packets are from and
the list of packets. For each packet, the detail view displays the
source IP address, source port, destination IP address, destination
port, the TCP or UDP flags and the data. We felt it was important to
allow the users to see the details to supplement the two overviews
we have provided. The detail view only shows data from either one
IP address or port number at a time. Every time an item is dragged
to the detail view, the current information is erased and only new
information is displayed.

4.1.5 Textual Filters

We allow users to specify filters on the log file to limit the amount of
information that is displayed. Users can filter the data by attributes
such as IP address, IP address range, port number, time or protocol.
This is just a small sample of the many different ways that data can
be filtered. We simply pass the filter to the jpcap library which per-
forms the filtering, so users have the full power of a bit packet filter.
Complete reference documentation can be found on the tcpdump
manual page available in UNIX or on the tcpdump site [12].

4.1.6 Time Filter

NAV has a double edged slider in the Filter Window that allows
users to filter based on time. The slider is initially set to contain
the full time period of the log file. As the user moves the slider
both the IP wall view and the services view update accordingly.
This allows users another way to narrow down what they are seeing,
and concentrate on specific details that they find interesting. The
slider is accurate to the millisecond, although feedback to the user
is provided primarily by means of two ’spinners’ that represent the
beginning and ending time of the selected range which are only
accurate to the nearest second. We surmise that this is sufficient
accuracy for most purposes. The spinners can also be used to set the
beginning and end time either through direct input or via a pair of
arrow widgets. If the user chooses a subset of the capture time range
using the slider or spinners the ’play’ button becomes enabled. The
user can click on this button and the range will advance one second
at a time, allowing the user to replay events as though they were
happening in real time.



4.1.7 Colour

Our ten default colours are selected from the twelve distinguishable
colours listed by Ware [28]. We use black for services that are not
assigned a specific colour and we do not use white because it is the
background colour for the IP wall view. Our default colour selec-
tions have been checked with VisCheck [7] and they are discernible
by people with both protanope and deuteranope colour blindness.
Although cyan is distinguishable from white, it is difficult to see a
cyan line on a white background for people with protanope colour
blindness so we avoided using cyan for the most common services.
The pink and orange colours we have selected are indistinguish-
able for people with tritanope colour blindness, but this is a very
rare form of colour blindness. VisCheck only claims to be accurate
when used with a calibrated monitor, but neither author had access
to a calibrated monitor. We felt that using VisCheck on our own
monitors was more useful than not using it at all.

Colour preferences are user selectable via a preferences dialog
and these selections apply to both views of the data. Users are free
to provide colours (using a colour picker) for as many service types
as they choose; they are not limited to coding with only twelve
colours. Although the academic literature suggests users may have
trouble distinguishing colours above the limit established by Ware,
we considered that it was important to allow the user to choose their
own preferences and simply provide safe defaults. Because there
are no constraints on the colours that users can select, we cannot
make any guarantees about the discernibility of the colours once
they have been changed.

4.1.8 Preferences

We have implemented a preferences dialog (Figure 10) which al-
lows users to select the services that they wish to see in the services
view. The UNIX services list was used to provide an exhaustive in-
dex of available services, which is presented in alphabetical order.
Users can choose the order in which services will be displayed as
well as select the maximum number of services they wish to display
at once. The current choices are 6, 8, 10 or 12, although a possible
future change could make this completely user configurable. The
preferences dialog is where the users can associate a colour with
a specific service. The chosen colour will stay associated with the
service throughout the run of the application. Preferences are not
saved between sessions at this time.

Figure 10: The preferences dialog.

4.2 Implementation

NAV is written in Java (compliant with version 1.4.2) using the
Eclipse Platform. The graphs in the services view are created with
jFreeChart [10]. We used jPCAP [14] as our network traffic packet
capture library, which is a native library interface for the pcap[26]
capture library written in C. The InfoVis Toolkit [13] was used to
provide the double edged Time Filter slider.

4.2.1 Performance and Scalability

Although the views themselves scale effectively, limitations of the
underlying packages and certain language features have created un-
avoidable performance problems. Java does not cope well with the
bit and byte level analysis that is required for packets. One particu-
lar problem is its lack of support for unsigned primitive types; this
often means that larger data types must be used to store standard
values. For example, an IP address is typically stored in a single
integer since it contains 32 bits of data, but only 31 bits are avail-
able in a Java integer and therefore it must be encoded as a long
data type of 64 bits. Worse yet, java ’bytes’ provide only seven us-
able bits because they are also signed. To represent eight bits it is
necessary to use a pair of bytes at considerable extra overhead and
expense. Java lacks many important low level functions to operate
on bits; in fact it only provides a Bit class and not a primitive bit
data type. There is no good means to create bit arrays for exam-
ple, and the Java BitSet class lacks methods to convert to or from
common data types. Writing convenience methods to perform these
functions requires awkward and inefficient looping structures.

Data is retrieved from the capture file with reasonable perfor-
mance; however, actually extracting data from the packets is an ex-
pensive operation. Simply retrieving a single field from a single
packet can be on the order of 20-30 ms on a Pentium IV 1.4ghz.
When there are many fields to be retrieved from each packet and
tens of thousands of packets to be processed, this quickly makes
the possibility of any real time processing of packets infeasible.
Despite the fact that the inner loop to retrieve packet data is O(1) it
remains infeasible to perform analysis of large data sets using NAV
at this time.

During the performance tuning phase a number of optimizations
were made to the source code. One major performance bottleneck
rests in the IP wall view where every packet received must have its
source and destination addresses extracted and compared against
another linked list to determine if this packet is associated with a
previous communication. The initial algoritihm for this check was
a simple linear search and this section of code was the largest per-
formance bottleneck. This problem was addressed by changing the
linked list to a hashtable data structure which transformed from a
O(n) worst case performance characteristic to an O(1) algorithm.
Changing the sequence of packet processing methods was also im-
portant, for example, initially an O(n log n) sorting algorithm pre-
ceded another method that did not yet require an ordered list and
provided additional filtering on the data set. By reversing the order
of these methods, the expense of the sorting algorithm was consid-
erably reduced. Because creating and recycling Java objects can
be an expensive operation, static factory methods and freelists were
used to manage frequently created and recycled objects. A freel-
ist tracks objects that are no longer in use, and recycles them by
clearing specific fields in the object before passing them out for
re-use. This adds to code complexity because each object that is
used must be explicitly retired to the freelist, bypassing Java’s au-
tomated garbage collection, but when small user interactions can
result in thousands of objects potentially being created or destroyed
there are tangible benefits to recycling.

The draw code for the IP wall view has a worst case performance
bound of O(log n) where n is the number of remote labels. This
is because the number of labels grows relatively slowly in com-



parison with the number of packets; for example most hosts/ports
communicate at least a few dozen or even a few hundred packets.
Although the pre-processing time is quite high, the application was
tested with a 10MB data set and once the data was displayed, col-
lapsing, scrolling and redraws were found to function adequately
with a redraw time on the order of 150ms on a Pentium IV 1.4ghz
class computer.

5 DISCUSSION

The authors of VISUAL [3] addressed a similar set of problems to
NAV. There are many similarities in the design decisions made for
NAV and Visual, and we feel that this supports many of our un-
derlying assumptions. Both NAV and Visual divide the machines
monitored into Local and Remote and both systems allow you to
specify groups of local computers for monitoring. Both systems
also display the ports and protocols used, as well as the amount of
data transferred. Although VISUAL is a much more polished prod-
uct, we feel that NAV is able to solve many of the same problems
and visualize the same data in an effective manner.

6 EVALUATION

Two cognitive walkthroughs were used to evaluate NAV. A cog-
nitive walkthrough is a theoretically structured evaluation tech-
nique which involves asking specific questions regarding the in-
terface [17]. A detailed description of the cognitive walkthrough
process is available in Lewis et al.’s paper [17].

6.1 Cognitive Walkthrough 1

We developed a cognitive walkthrough that focused on the scenario
of a user attempting to discern information about security related
activity that might have taken place on their system overnight be-
tween midnight and eight am. Because the user was not using their
system interactively during those hours, the only expected traffic
was the large bittorrent and ftp downloads that were left running
overnight. The walkthrough focused on each task the user would
need to perform and the individual goals of the user at each step.
From this walkthrough it was clear that to use the IP wall view ef-
fectively considerable filtering must be performed. The user was
interested in discovering what was causing an unusual amount of
upload traffic, and had to narrow the time field using the time slider
and seek through the log information to realize their bittorrent client
was also uploading data to other clients. Because the relevant hosts
were farther down on the list the user was forced to scroll as well as
’collapse’ elements of the wall. Scrolling may have a detrimental
effect on the users context awareness. It was also determined that
the user would need at least modest familiarity with networking ter-
minology to use NAV effectively.

6.2 Cognitive Walkthrough 2

A second cognitive walkthrough was completed to determine
whether users could easily use NAV to ascertain which services are
being used on their machine and which service consumed the most
network resources and whether their bandwidth limit was exceeded.
As in the previous walkthrough, user goals were considered at each
step of the process. It was determined that users will be able to ex-
tract this information from NAV, but a few questions were raised.
First, in order to use NAV users must realize that they can log net-
work traffic going to and from their machine and they must know
how to log this data. NAV does not currently have any documenta-
tion and some documentation may be necessary for users who are
inexperienced with networking. Users will be able to determine
which services are being heavily used by scanning the IP wall view

and the services view. However, since it is possible that some ser-
vices from the IP wall view are not displayed in the services view,
there is the possibility that a heavily used service would not be rep-
resented in the services view. This could cause the user some con-
fusion. A third issue that arose during the cognitive walkthrough is
that the y-axes in the service view graphs can all be different. Each
axis’s range is set based on the specific data in that graph. This de-
tracts from the usefulness of having multiple graphs close to each
other because they cannot easily be compared.

7 LESSONSL EARNED

We learned several valuable lessons while working on the NAV
project. An important goal of our project was that our solution be
scalable to very large data sets; we discovered that implementing
scalable graphical user interfaces in Java can be very difficult. Al-
though Java is quite suitable for some tasks, we did not anticipate
the added complexity and performance impact of having limited
support for low level primitive operations on bits, bytes and un-
signed integers. We also learned that the complexity of individual
methods can be crucial to the performance and scalability of an ap-
plication. Methods that are called during the drawing phase should
be O(1) if possible, and O(n) at the worst case. Any algorithms in
the critical path that exceeded these limitations caused a noticeable
lag in our application’s refresh rate. We initially implemented NAV
without much consideration to the time complexity of the methods.
Once we realized that performance was an issue we were able to
redesign several methods to reduce their time complexity, and in
some cases reduce the time complexity to O(1) from O(n) or in one
case an O(n2) algorithm.

A considerable volume of software engineering and design liter-
ature describes the importance of involving users in the design pro-
cess [2], and during the course of this project both of the authors
felt the need for this requirement was reinforced. More user input
throughout the design process would have been extremely useful
when design decisions were being made. Due to the tight time con-
straints of the project, we did not feel we had time to gather fur-
ther user data. In reviewing design decisions and considering that
backtracking that was necessary on a number of occasions we must
concede the possibility that we would have saved time overall if
additional user feedback had been gathered and used to guide our
development. Good design is an iterative process by nature.

Creating an effective model that provides both overview and de-
tails is challenging and requires good planning. It can be difficult
to decide which dimensions are important enough to display in the
overview. Even simple questions like how much space to devote
to the overview and detail view can be challenging. We decided
to allow the users to manipulate the relative sizes of our views but
providing default values required intuition as well as trial and error.

The IP wall view visualization requires the user to scroll when
there are too many labels to fit on the screen. Unfortunately
scrolling violates guaranteed visibility [19] and can result in a loss
of context. Another means of encoding this information or explor-
ing alternatives to scrolling such as zoom/pan operations might be
better.

There can be a tradeoff between documented information visual-
ization techniques and allowing users to decide how they want the
system to look or feel. In our case, we felt it was important to allow
the users to select colours for their services, but by allowing them
to do so, they may pick colours that are not distinguishable from
each other. Despite this fact, we felt empowering users should be
a priority design goal of any usable system. Perhaps an optimal
approach would be to present the user with a visual warning when
poor colour choices were made, or to provide a ’recommendation’
wizard.



8 CHALLENGES

We ran into several challenges while working on the NAV project.
Initially we were planning on using the InfoVis Toolkit [13], but
both authors struggled to implement the necessary visual compo-
nents using the Toolkit. Instead, we opted to use jFreeChart [10]
for the services view and Java2D for the IP wall view with the In-
foVis toolkit used only to provide the double edged slider for time
filtering.

The scalability of our system is crucial because its usefulness
depends on the capability of displaying large data sets. We did have
challenges in obtaining a large log file to test the scalability of our
system. After acquiring a large data set (on the order of 100MB) we
spent a considerable amount of effort to optimize our algorithms.
Ultimately, the underlying methods provided by the libraries we
are using to access the data became the key bottleneck. Retrieving
data from the packets is a slow operation; it involves obtaining a
series of byte offsets inside of what is essentially a large byte array,
and translating these into ’long’ 64 bit integers, and from there into
more useful forms of data such as text strings.

We were hoping to implement efficient dynamic queries for the
filtering of data. Unfortunately, jpcap did not fully implement the
functionality that we required; the library was designed as an inter-
face for live packet captures and the support for reading log files
is an auxiliary function. Once the data is read, there is no way to
modify the filter to perform live changes on the data set. The only
way to re-filter the data is to read the log file again from the be-
ginning with a substantial up front cost in reprocessing the packets.
The only alternative is to use a complete bit packet filter in Java,
which our research suggests does not currently exist and was be-
yond the scope of this project to implement. First hand experience
with Java’s poor support for low level primitive types indicates it
would not be worth the effort to perform this implementation. We
have implemented the ability to change the filter at run time and
reload the data, but this takes the form of a static, rather than dy-
namic, query. Another limitation of pcap is that though time stamp
information is associated with each packet, the library does not pro-
vide the capability to filter based on a time range. Fortunately this
is one area where it was relatively trivial to write support in Java to
query the packet data to derive ranges based on time values.

Writing the necessary low level bit functions was time consum-
ing and frustrating, particularly the lack of eight bit bytes which
is a low level primitive type fundamental on most computer archi-
tectures. It is the belief of the authors that other programmers may
have likely written utility classes to perform most of these functions
but these don’t seem to be available on the internet. Most Java code
samples focus on higher level functions.

9 FUTURE DIRECTIONS

In this section we discuss features and capabilities we would like
to see added to or expanded in the NAV system. As the project
progressed it became clear that our desired feature list was growing
much faster than the implemented feature list. We document here a
few key ideas that we felt had the potential to dramatically improve
the application.

9.1 Animation

Animation represents a valuable Information Visualization tech-
nique by helping provide users with context, feedback to input as
well as being a pre-attentive cue to draw focus to a specific region
of the screen. There are a number of areas where animation could
be used more effectively in the NAV application.

9.1.1 IP Wall ghosting

In the current implementation of the IP wall, if the time slider
is moved the IP wall view is immediately updated to display the
changed information; however, the immediacy of this response
comes at the cost of user context. We propose ’ghosting’ as a solu-
tion to this problem where previous connection lines and labels do
not immediately disappear but instead are blended with the back-
ground over some duration allowing the user to see connections
that existed in previous time periods. When the user is in ’play-
back’ mode, old connections would slowly fade out using the same
mechanism.

9.1.2 Animated Connection Hiding

The current approach to ’disconnecting’ an entry from the IP wall
view is quite sudden and jarring. When a user clicks on the [+]
next to the label, the label shifts inwards instantly and the connec-
tion lines to this object are removed. We propose using a smooth
animation technique similar to what is proposed in the van Wijk
paper on Smooth and Efficient Zooming and Panning [27]. Even
though the path that is taken by the label is quite short, it could still
benefit from the natural motion inherent in the accelerate/decelerate
technique described in this paper.

9.1.3 Intrusion Detection

The underlying framework for providing a means to graphically dis-
play intrusions in the form of animation on the IP Wall view has
been integrated into the code but the feature remains incomplete.
Several different approaches were examined including causing con-
nection lines to ’blink’ or to change to a specific colour to alert the
network administrator of hostile activity. Based on Ware [28] it
may be best to provide some form of a glyph or icon that moves;
this would help to work around change blindness as documented
in visualization literature [21] and provide a pre-attentive means of
drawing the users attention. The central idea is to provide a set of
animated glyphs which would indicate a type of hostile payload.
The glyph would be presented along the connection line between
the two labels and would have a directional indicator to indicate the
source and target of the attack, when the user clicked on the glyph
the detail view would be updated with the specific packets involved
in the hostile payload.

Beyond simply detecting hostile payloads it would also be help-
ful to implement a means for the user to define lists of hosts that
do not normally accept connections from the internet, or IP’s in the
local range for which no hosts exist and highlight traffic that at-
tempts connections to these hosts. Because no requests have been
issued from these IP’s, traffic directed to them from the internet is
by definition unsolicited and almost certainly represents a network
scan.

9.1.4 Direction of traffic

In the current implementation the IP wall view does not distinguish
between incoming or outgoing traffic. This information could be
crucial to a network administrator; if there is a large volume of
traffic between a local and remote machine it may be imperative to
know which direction that traffic is flowing. One possibility would
be to animate the connections between remote and local machines
to convey the direction of traffic.

9.2 IP Wall section colouring

Currently the IP wall view can only associate a single service colour
with the section of wall immediately adjacent to the label. This
serves well when the tree has not been collapsed since generally a



single IP and port will only be associated with a single remote ser-
vice at any given time. However when the ports of an IP address
are collapsed or when multiple IP ranges are represented by a sin-
gle ’parent’ label there may be connections for many service types
encoded. These services are visible by the connection colourings
when the label is connected to the wall; however, if the user discon-
nects this entry from the wall, information about all but one service
is no longer visible to provide the user with context. A solution
to this problem could be to make the section of wall into a grid of
colours that can display a colour swatch of each service associated
with that entry.

9.3 Tooltip support

There are a number of areas of the application that could benefit
from the addition of tooltips. One key addition would be to provide
tooltips when a user mouses over a label on the IP Wall View which
provides DNS resolution for the specified IP Address. A lookup
could also be performed on the service name associated with the
specified port. This could be important in helping the user to iden-
tify remote hosts they don’t recognize.

9.4 Live packet capture

The capability of providing live packet capture on the interface was
explored but limitations of the underlying packet capture software
library, which blocks waiting for packets, have made this challeng-
ing to achieve within the time limitations of the project. The frame-
work for live traffic capture has been integrated into the code but
some data structures and calls must be made thread safe before this
feature is complete. Because the results of using this capability are
currently unpredictable this feature has been disabled.

9.5 Expanded Preferences

Currently, the colours that users associate with services only persist
while the application is running. It would be much more useful if
colours could be stored in the registry or in some other manner so
that users’ colour selections are persistent across runs of the appli-
cation. We would also like to allow users to specify default sizes
of the views, or to indicate when they have the views aligned in the
way in which they would like them to stay.

9.6 Unexpected Traffic

We would like to add the ability for users to set time ranges where
substantial amounts of traffic are not expected and to provide a vi-
sual or audible notification, as well as log the information, when
traffic exceeds the specified threshold during this time. The user
would define the threshold amount of traffic at which this notifica-
tion would occur.

9.7 Time Slider Critical Event Notification

The time slider currently only conveys information about the size of
the complete data set and the range of the currently selected subset.
With modifications to the slider there is no technical reason it could
not be used to encode additional information. For example, it could
be integrated with the intrusion detection code in such a way that
coloured vertical bars were visible at points along the slider where
network security events such as port scans or known exploits have
taken place.

10 CONCLUSION

In this paper we have discussed our contribution to providing a high
level network traffic visualization. Network traffic analysis remains

an important problem due to the steadily increasing volume of net-
work traffic and the inability of traditional network monitoring tools
to provide a good overview of traffic patterns. Although these inter-
faces provide fine grained details, it is very difficult to quickly gain
a high level understanding of the nature of the traffic and what ser-
vices are involved; when standard network sniffers are used on large
data sets the output quickly becomes unmanageable. Both home
and enterprise users are becoming more interested in network traf-
fic analysis and the current tools do not meet all of their needs. The
Network Analysis Visualization (NAV) tool displays packet data
from log files with IP address and service overviews accompanied
by a detail view. NAV has textual as well as time based filtering and
allows users selectable colours for services, as well as the capabil-
ity to aggregate and remove connections among other features. We
feel that we have addressed many of the key aspects of this problem
with our solution, and that our visualization is sufficiently extensi-
ble to provide a wider range of capabilities in the future.

11 ACKNOWLEDGEMENTS

We are grateful to Norm Hutchinson for providing an interview to
develop requirements and to Tamara Munzner for a number of help-
ful suggestions related to this project.



(a) NAV main screen showing the IP wall, and service view in
logarithmic scale mode with a large unfiltered data set.

(b) IP Wall View with some elements collapsed and discon-
nected, service view with a logarithmic data set.

(c) NAV with a large data set and a narrow time range. (d) Service view changed to linear time scaling.

(e) Filter applied excluding tcp packets. (f) Added domain name service lookup monitoring, removed
irc3 and https.

Figure 11: Screenshots from NAV



REFERENCES

[1] Analysis Console for Intrusion Databases (ACID). downloadable at:
http://acidlab.sourceforge.net/, cited December 13, 2004.

[2] Ronald M. Baecker, William Buxton, Jonathan Grudin, and Saul
Greenberg.Readings in Human-Computer Interaction: Toward the
Year 2000. Morgan Kaufmann Publishers, second edition, 1995.

[3] Robert Ball, Glenn A. Fink, and Chris North. Home-centric visualiza-
tion of network traffic for security administration. InVizSEC/DMSEC
’04: Proceedings of the 2004 ACM workshop on Visualization and
data mining for computer security, pages 55–64. ACM Press, 2004.

[4] R.A. Becker, W. S. Cleveland, and M. J. Shyu. The Visual Design and
Control of Trellis Display.Journal of Computational and Statistical
Graphics, 5:123–155, 1996.

[5] April Bandwidth Report: Canadian Broadband Continues Record
Growth. http://www.urlwire.com/news/042503.html, cited December
13, 2004.

[6] Gerald Combs. Ethereal. downloadable at: http://www.ethereal.com/,
cited December 13, 2004.

[7] Robert Dougherty and Alex Wade. VisCheck. downloadable at:
http://www.vischeck.com/vischeck/, cited December 13, 2004.

[8] K. Egevang and P. Francis. RFC 1631 - The IP Network Address
Translator (NAT). http://www.faqs.org/rfcs/rfc1631.html, cited De-
cember 13, 2004.

[9] Fluke Networks. Fluke. http://www.flukenetworks.com/, cited De-
cember 13, 2004.

[10] David Gilbert. jFreeChart. downloadable at:
http://www.jfree.org/jfreechart/, cited December 13, 2004.

[11] Jeffrey Heer. Prefuse. downloadable at:
http://prefuse.sourceforge.net, cited December 13, 2004.

[12] Van Jacobson, Craig Leres, and Steven McCanne. TCPdump public
repository. http://www.tcpdump.org/, cited December 13, 2004.

[13] Jean-Daniel Fekete. InfoVis Toolkit. downloadable at:
http://ivtk.sourceforge.net/, cited December 13, 2004.

[14] jPCAP. downloadable at: http://jpcap.sourceforge.net, cited Decem-
ber 13, 2004.

[15] Kiran Lakkaraju, William Yurcik, and Adam J. Lee. NVisionIP: net-
flow visualizations of system state for security situational awareness.
In VizSEC/DMSEC ’04: Proceedings of the 2004 ACM workshop on
Visualization and data mining for computer security, pages 65–72.
ACM Press, 2004.

[16] Stephen Lau. The Spinning Cube of Potential Doom.Commun. ACM,
47(6):25–26, 2004.

[17] Clayton Lewis, Peter G. Polson, Cathleen Wharton, and John Rie-
man. Testing a walkthrough methodology for theory-based design of
walk-up-and-use interfaces. InCHI ’90: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 235–242.
ACM Press, 1990.

[18] Jonathan McPherson, Kwan-Liu Ma, Paul Krystosk, Tony Bartoletti,
and Marvin Christensen. Portvis: a tool for port-based detection of
security events. InVizSEC/DMSEC ’04: Proceedings of the 2004
ACM workshop on Visualization and data mining for computer se-
curity, pages 73–81. ACM Press, 2004.

[19] Tamara Munzner, Francois Guimbretiere, Serdar Tasiran, Li Zhang,
and Yunhong Zhou. Treejuxtaposer: scalable tree comparison us-
ing focus+context with guaranteed visibility.ACM Trans. Graph.,
22(3):453–462, 2003.

[20] Network General. Sniffer Pro. http://www.sniffer.com/, cited Decem-
ber 13, 2004.

[21] Ronald A. Rensink. Internal vs. external information in visual per-
ception. InSMARTGRAPH ’02: Proceedings of the 2nd international
symposium on Smart graphics, pages 63–70. ACM Press, 2002.

[22] Classless Inter-Domain Routing (CIDR): an Address Assignment and
Aggregation Strategy. http://www.faqs.org/rfcs/rfc1519.html, cited
December 13, 2004.

[23] Marty Roesch. SNORT. downloadable at: http://www.snort.org/, cited
December 13, 2004.

[24] Ben Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. InVL ’96: Proceedings of the 1996 IEEE
Symposium on Visual Languages, page 336. IEEE Computer Society,

1996.
[25] America Internet Usage and 2004 Population Statistics.

http://www.internetworldstats.com/stats2.htm, cited December
13, 2004.

[26] Van Jacobson and Craig Leres and Steven McCanne. PCAP. down-
loadable at: http://www.tcpdump.org/, cited December 13, 2004.

[27] J. van Wijk and A. Nuij. Smooth and efficient zooming and panning.
[28] Colin Ware. Information Visualization: Perception for Design. Mor-

gan Kaufmann Publishers, second edition, 2004.
[29] Zone Labs. ZoneAlarm. http://www.zonelabs.com/, cited December

13, 2004.


