
Prawn: An Interactive Tool for Software Visualization

Andrew Chan, Reid Holmes

Department of Computer Science
University of British Columbia

201-2366 Main Mall
Vancouver BC Canada V6T 1Z4
{chana, rtholmes}@cs.ubc.ca

ABSTRACT
Software systems, by their very nature, are complex ab-
stractions of the physical world. Due to this complexity,
it is often extremely difficult for developers to fully compre-
hend the system they are working on, particularly when they
were not involved in designing it. However, this comprehen-
sion is critical; over a system’s lifespan, more time is spent
maintaining it than in any other phase. We introduce the
Prawn tool, which uses a variety of information visualization
techniques to allow developers to see how their code inter-
acts with the rest of the system. We believe Prawn reduces
the time and effort required to make a change to a system,
and increases developer’s confidence in their changes.

1. INTRODUCTION
Box and arrow diagrams are a key tool in any software de-
signer’s toolkit. Nearly any system documentation will con-
tain class diagrams of the system or parts of the system,
whether in UML1 or in another notation. These diagrams
are much easier to understand than a textual description of
the classes, and they can convey a lot of information in a
standardized way.

When a developer joins a software project, the project is
often relatively mature, and the developer’s role is to help
maintain or extend the code base to meet the customer’s
needs. As a result, the developer must learn about the sys-
tem quickly, often on the fly, such as when he or she is asked
to make a change. The primary source of support for the
developer may not be the system designers or developers
with expert knowledge of the system, but design diagrams
and other documentation. The architects of the system may
have left the company, and with the size and complexity of
software systems, it is unlikely that any one person would
understand every facet of the system.

Unfortunately, design documentation has its shortcomings.
It may be incomplete because it was not maintained after
the initial release of the system. The documentation may
contain incorrect details, or the implementation may vio-
late aspects of the design, either through error or due to is-
sues that arose during implementation, such as performance
problems. Even if the documentation is correct and up-to-

1http://www.omg.org/uml/

date, it is likely to be quite voluminous for any non-trivial
system.

To make a change, developers typically need detailed infor-
mation about specific parts of the system, and a high-level
understanding of how these parts interact with one another
and the rest of the system. Although design documentation,
even with its shortcomings, would be valuable, a useful tool
for the developer would be an interactive application that
presents the design of the system, based on the actual imple-
mentation. The interactive nature of the application would
allow each developer to focus on the areas of interest to
them.

An interactive system would also be useful for developers
who are considered experts in the system. With the size of
modern software systems, diagrams help expert developers
reason about the system, and can assist them in explaining
the implementation to new developers. Using an interactive
system, the expert developer again would not have to at-
tempt to find the correct design diagram, but instead could
manipulate the view to suit his or her needs. An expert de-
veloper could also use this system to evaluate whether the
implementation of a system conforms to its design, and to
determine the feasibility of making changes to the system.

Software visualization is an active area of research. There
are two broad categories of visualization: dynamic and static.
Dynamic visualization allows a developer to see the behavior
of a system over time, given a certain set of inputs. It may
or may not reveal details about the system structure, but is
useful for tasks such as performance tuning, or debugging.

Static visualization presents the structure of the system based
on an analysis of its source code. The main problem has
been enabling an approach to scale to large systems. Two
static visualization tools are the Rigi tool [7] and the Sim-
ple Hierarchical Multi-Perspective (SHriMP) tool [13]. Rigi
provides a semi-automated process to reverse engineer a sys-
tem’s design from its source code. SHriMP builds on this,
providing an alternate means of visualizing large data sets
(such as software structure) using a zoomable user-interface
and multiple views.

We were motivated to examine this area for several reasons.
One of the authors hoped to use a software visualization
tool to see whether the implementation of a software system

conformed to its design. We were not satisfied with the ones
we tried; either the tool did not contain the functionality we
desired, or it was too difficult to use. At the same time,
we felt that with recent advances in software source analysis
tools2, and zoomable user interface toolkits34, it would be
possible to concentrate on the visualization aspects of a tool,
rather than having to build the infrastructure ourselves.

In this paper, we describe the Prawn tool. It is a static
visualization tool designed to assist a developer in under-
standing the structure of a Java system. Although it would
be most useful to a developer who has domain knowledge of
the system being analyzed, it could also help a developer ex-
plore an unfamiliar system. Usability and utility were high
priorities in creating Prawn; we felt that a developer should
be able to use the tool with minimal effort and training.

The rest of this paper is as follows: In Section 2, we de-
scribe the key features of Prawn. Following this, in Sec-
tion 3 we present three sample scenarios that illustrate how
Prawn could be used. Section 4 describes the related work
in this area, with a particular comparison to the SHriMP
tool. Section 5 presents an evaluation of the strengths and
weaknesses of Prawn, while Section 6 presents future work
which would increase the utility of the Prawn system. The
final section concludes.

2. PRAWN
Prawn allows a developer to view the structure of any Java
system easily. The developer only needs to specify as a
command-line argument the name of a JAR file contain-
ing the classes composing the system. Prawn analyzes the
system and displays the windows shown in Figure 1.

The view presented to the developer mimics the appearance
of a UML class diagram with a node and arc graph. This was
done to help reduce the learning curve associated with using
the tool, and thus increase the chances that actual develop-
ers would use it. Nodes represent package, abstract class,
class, or interface constructs in the system. Arcs represent
calls between constructs, and an estimate of the number of
calls made between constructs is provided5. Many informa-
tion visualization techniques were used to ensure that the
visualization would be as useful as possible.

2.1 Colour
A developer can easily distinguish between the different kinds
of nodes by their colour: packages are blue, abstract classes
are dark red, classes are light red, and interfaces are yellow.
To reinforce the notion of packages containing subpackages,
package nodes are semi-transparent so that packages that
are several levels deep in the structure of the system are
coloured a darker hue of blue. Colour is also used to distin-
guish between different types of arcs.

By default, arcs are shown in a muted blue colour so that

2http://www.alphaworks.ibm.com/tech/jikesbt/
3http://www.cs.umd.edu/hcil/jazz/
4http://zvtm.sourceforge.net/
5Since Prawn uses static analysis of code, it is impossible to
determine the exact number of calls. Method calls may be
polymorphic, or may be made based on information that is
provided at run-time

they do not overwhelm the display. Arcs that pass through
packages are visible due to the package transparency, but
arcs that pass through classes are not. When a developer
moves the pointer over a node, all of its arcs are displayed
and highlighted, regardless of any other settings that may
have been set. Incoming calls are shown in purple, outgo-
ing calls are shown in blue, and structural calls (calls to a
superclass, or an interface that’s implemented, for example)
are shown in green.

Although the way colour is used in Prawn does not take
advantage of the fact that it can be perceived preattentively,
we believe that a developer would primarily be interested
in systematically examining the visualization, rather than
looking for things to pop-out.

Figure 1: Prawn Canvas and Command Window

2.2 Aggregation
Any non-trivial Java system is composed of hundreds or
thousands of classes organized into a package hierarchy. How-
ever, a developer is usually only interested in a subset of
these classes. Within this subset, it is likely that the devel-
oper is especially concerned with a small number of classes;
he or she needs to understand the rest at a high level.
Prawn supports this by aggregating data along the package
hierarchy, then allowing the developer to arbitrarily view
parts of the system at different levels of detail.

The initial view that Prawn presents is of the top-level pack-
ages in the system. We define this as those packages located
at the point where the package hierarchy in a system first di-
verges. For example, if the packages in a system include ca,
ca.ubc, ca.ubc.foo, and ca.ubc.bar, the top-level pack-
ages would be ca.ubc.foo and ca.ubc.bar. If the system
contains packages that differ immediately at the root level,
these packages (say, ca and org) would be shown.

The developer can then select a package to view in more de-
tail. The node representing the package is expanded in size
and its contents are displayed within it. When nodes are
expanded and nodes within nodes are expanded, this visu-
ally reinforces the nesting of classes and packages within the

package hierarchy. This is shown in Figure 3. All visualiza-
tion takes place within a single window; a multiple-window
system would be difficult technically to keep synchronized,
and consume valuable screen real-estate.

Figure 3: Prawn Canvas with Nested jEdit Packages

2.3 Navigation and Zooming
Once the developer has opened several packages to examine
their contents, the nodes may not fit within the Prawn win-
dow. The developer can do one of three things:

• Pan over the contents

• Move nodes as needed so that the nodes of interest fit
within a window. Arcs are automatically moved with
nodes.

• Zoom in and out of the contents. This permits more
content to fit within the window; text is scaled so that
it remains readable no matter how far out the devel-
oper zooms.

Panning and zooming are two separate operations in Prawn,
although they could have been combined, as shown in [6].
After experimenting with Jazz, a zoomable user-interface
toolkit that implements this metaphor, we decided against
using it, as we felt that developers would be able to grasp
the separate concepts, but would struggle with controlling
pan and zoom simultaneously.

Besides the zoom described, we also adopted a focus+context
metaphor based loosely on fish-eye views. Nodes that are
expanded occupy more screen real-estate than those that are
not, although we did not have time to implement an algo-
rithm to reclaim space when nodes are collapsed. Rather
than having a single fish-eye lens that a developer would
move over the visualization, we felt that developers would
want to view multiple aspects of the system in varying levels
of detail, simultaneously. This could be useful when a devel-
oper is trying to see the interaction between two particular
classes that are in different packages, as shown in Figure 5.

2.4 Spatial Layout
The organization of nodes in the graph greatly affects its
usability. Although a developer could use the functionality
provided to organize nodes as he or she wished, it is time
consuming to do so. As a result, in Prawn we used three
different approaches to lay out nodes in a manner that we
felt would be useful.

At first, we employed the straightforward strategy of laying
out the nodes in a grid. Later, we noted that the number of
times arcs passed through nodes en route to their destination
node would be greatly reduced if nodes were laid out in a
radial manner. At the same time, we wanted to have closely
related nodes placed close to one another: a class should
be placed close to its superclass, a class should be placed
close to the interfaces it implements, and subclasses of a
common superclass should be placed together. Moreover,
the appearance should be similar to that of a UML diagram.

We decided to use each of these methods where appropri-
ate. When laying out top-level package nodes, we employed
the radial method. For inheritance and interface implemen-
tation hierarchies, we used the strategy of placing closely-
related nodes together; this came to be known as the tree
layout. Other nodes were laid out using the grid method.

Figure 4: Occlusion Avoidance Algorithm

When a package is expanded to view its contents, nearby
nodes often are occluded by the expanded package. A strat-
egy was devised whereby occluded nodes were moved to the
same location relative to the expanded node as before the
node had been expanded. This is diagrammed in Figure 4.
At first, two packages, A and B, are shown. Then package B
is expanded; its new size is large enough that it will occlude
package A. The new position of A is calculated by first de-
termining the length of the line from the center of B through

Figure 2: Prawn Canvas with Three jEdit Packages Open

the center of A to the edge of A. Originally, package A was
moved by this amount, but to improve the appearance of the
layout, this was changed to a percentage of the line length.

Another consequence of expanding a package is that the
parent node often will not be large enough to contain the
newly expanded package. When this happens, Prawn resizes
nodes as necessary, from the parent node up to the top-level
nodes.

2.5 Arc Management
Even with the varying level of detail and layout techniques
discussed, the number of arcs shown in a graph quickly be-
comes unmanageable. As in the case of classes, a developer
is typically only interested in a small subset of the calls
made.

Prawn provides a number of techniques to help developers
find arcs of interest and hide those that are not. These
techniques work at different levels of granularity; some apply
to the entire graph, while others only apply to a single node.

If the developer is interested in looking at classes that re-
ceive a large number of calls, he or she can identify these by
specifying a value for an Arc Width. If an Arc Width of 50
is specified, an arc representing 1 to 49 calls will be a pixel
wide, an arc representing 50 to 99 calls will be two pixels
wide, and so on. Arcs can be up to four pixels wide. Another
option for the developer would be to set an Arc Threshold.
This is a value that defines the cutoff point for displaying
arcs; if the arc represents fewer calls than the value, than it
is only displayed when the developer moves the pointer over
the node. Structural calls are not subject to this threshold.

At a finer-grained level, Prawn allows a developer to display
or hide the arcs from a package, class, or interface to other
nodes. One application of this would be to ignore classes
that are used for debugging purposes only. While a devel-
oper is pointing at a given node, he or she can choose to
keep incoming, outgoing, or structural calls highlighted af-
ter the pointer has been moved off. This would be useful
when focusing on a given class. Figure 5 shows a view of
Prawn with some of the arcs hidden.

Figure 5: Prawn Canvas of jEdit with Many Arcs Elided

2.6 Implementation
Prawn was implemented using Java 2 and consists of sev-
eral modules. The engine for analyzing Java classes was
taken from the FEAT tool6 written by Martin Robillard,
a member of the Software Practices Lab at the University
of British Columbia7. FEAT in turn uses the open-source
JikesBT toolkit created by IBM for analyzing Java byte-
code. A user interface module queries this engine to create
an object representation of the nodes and arcs in the vi-
sualization. The actual visualization of the graph uses an
open-source Java 2 zoomable UI toolkit called ZVTM.

Prawn is designed to be as extensible as possible, while
maintaining the scope of visualizing software systems. It
is designed so that a different Java analysis engine could
be used instead of FEAT with minimal changes to the user
interface module. As well, improved layout managers can
be added by implementing an interface and indicating when
the new manager should be used.

6http://www.cs.ubc.ca/∼mrobilla/feat/
7http://www.cs.ubc.ca/labs/spl

Approximately 19 000 lines of commented Java code were
written to create Prawn; approximately 8500 lines were slightly
modified FEAT code. An issue that arose early in develop-
ment was that FEAT would only return accurate results if
a particular Java rt.jar was used - specifically, the version
1.4.1 01 JAR from one of the author’s personal computer.
Using earlier or newer versions of the JAR, or even down-
loading and installing a clean copy of the Java 1.4.1 01 JRE
did not work. We suspect that the problem lies with the
JikesBT toolkit, as it was originally designed to analyze
Java 1.1.8 and Java 1.2.2 classes, but we were unable to
verify this.

3. SAMPLE SCENARIOS
While Prawn is not suitable for all software evolution tasks,
we present three scenarios where we feel that it would be
useful.

3.1 Discovering Design Violations
One of the authors has worked on a medium-sized system
that provides tools for Undergraduate Advisors in the De-

partment of Computer Science. The CSSIS system consists
of approximately 34 000 lines of code across 150 classes, and
is subdivided into several modules. There are two major
modules, one for advising and one for reporting. The au-
thor had designed the modules such that they would rely on
common shared modules, but should not interact directly
with one another. Prawn was used to test whether the im-
plementation reflected this.

At the top-level, Prawn shows a ca.ubc.cs package. Ex-
panding this package shows two packages: cssis and sis.
Expanding the cssis package shows its 12 children, a mix-
ture of packages, classes, and interfaces. Among the pack-
ages are the advising and reporting packages, which rep-
resent the advising and reporting modules.

Placing the pointer over the advising package, it was clear
that there indeed were calls between the advising pack-
age and the reporting package in both directions. After
expanding each of these nodes, the number of arcs shown
on the screen became prohibitive. We chose to focus on
calls from classes in the advising package to classes in the
reporting package, so we hid all calls from packages besides
these packages, then highlighted the incoming calls to the
classes in the reporting package. This allowed us to easily
identify the classes that would have to be examined.

This task could be accomplished using the UNIX grep8 tool
to search for imported classes from the reporting package.
However, it would have been more difficult to accomplish:

• It would be difficult to ensure all calls to the reporting
package were captured without introducing false pos-
itives, such as a comment containing the word “re-
porting.” This is particularly true in object-oriented
systems as grep cannot compensate for polymorphism.

• The number of calls made from one class to another
would be difficult to ascertain, so it would be difficult
to prioritize which classes to focus on first

• It would be difficult to see whether there are any pat-
terns in the calls. For example, if calls were being
made from a class and its subclasses to another class,
this might not be apparent.

3.2 Refactoring a Class
Prawn can also be useful when refactoring a class or set
of classes. Refactoring may be necessary to introduce ad-
ditional functionality, to improve the performance of some
aspect of the system, or to change the design so that it is
more extensible.

In the CSSIS system, one of the key modules is a user pack-
age that contains the functionality for different kinds of users
of the system. Changing any of the classes in the user pack-
age would affect many classes in the rest of the system. Ex-
panding the nodes until the children of the cssis package
are shown, this becomes clear; four packages call the user

package, including the reporting package and especially the
advising package.

8http://www.gnu.org/software/grep/grep.html

Given the large number of calls between the advising pack-
age and the user package, more investigation would be needed.
This would especially be the case since the part of the advis-
ing module uses Java Servlet pages, and other part is part of
a Java application. Both parts rely on a layer of the module
that reads and writes information to a database. Expanding
the advising package, the developer can see that the distri-
bution of calls from each of these parts to the user package
is roughly equal. Hence, the developer will need to spend
time with each of the developers responsible for these parts
to determine how the effort of the changes that are planned.

With Prawn it is possible to quickly ascertain the difficulty
of making a particular change to a system. Estimating the
difficulty of making a change and the time required to do is
not a trivial task. Even with domain knowledge of a system,
having an interactive tool like Prawn allows a developer to
make predictions with greater confidence, since their analy-
sis is grounded in facts taken from the implementation.

3.3 Comprehension and Extension
While the previous scenarios have relied on expert knowl-
edge of a system, Prawn can also be used by developers to
learn about the structure of a system and to gain insight
into how the system could be changed.

JHotDraw is a well-known drawing framework created by
Eric Gamma as a demonstration of how a well designed
system can take advantage of design patterns. It consists
of 90+ classes and over 20 000 lines of code. One of the
authors had basic knowledge of JHotDraw, but had never
examined the source code. Using Prawn, he attempted to
determine what changes would be required to add a Koala
figure to JHotDraw’s palette of figures.

After expanding the CH.ifa.draw node (see Figure 6), the
author noted the presence of a figures package and ex-
panded it (see Figure 7). To reduce the number of calls
being displayed, he first hid all the calls at the CH.ifa.draw

level, then hid calls within the figures package as well. He
then proceeded to highlight the structural calls within the
figures package (see Figure 8).

Next, the author noted that KoalaFigure would extend the
AttributeFigure class. He then decided to see what classes
within the figures package called AttributeFigure and its
subclasses. He accomplished this by moving the pointer over
each of these nodes and highlighting all their calls. After
this, the author decided to group the non-Figure classes
according to whether or not they interacted with the Figure
hierarchy (see Figure 9). It was useful for the author to
zoom out so that more information could be displayed on
the screen.

Based on this information, the author identified several classes
that call each Figure and thus would have to be modified
for the addition of the new figure. He also observed that:

• What would seem to be related classes did not call
the Figure classes equally. For example, there were
several classes ending in “Handle,” but only some of
them made calls.

• There were several classes ending in “Connector,” but
there was no superclass evident within the package.
Since these classes all had references to CH.ifa.draw.standard,
one could surmise that their superclass would be lo-
cated there.

From here, the author could have continued to determine
what packages are called by the Figure hierarchy, and what
packages call the it. Although the author would not know
exactly what changes would have to be made to add the
figure, Prawn provided an indication of where the changes
would likely be made.

4. RELATED WORK
Visualization has been used as a method to help under-
stand [9], debug [1], and maintain [2] complex software sys-
tems. Visualization tools may show dynamic (runtime) be-
havior or static (structural) data. Further information about
the software change process (from information stored in CVS
or bug-tracking systems) can be visualized in order to de-
termine related aspects of the system [2]. Both high and
low-level aspects of the system can also be visualized.

Low-level visualizers try to examine every call that the sys-
tem makes and are often used to help locate performance
problems [11]. High-level visualizers often try to extract a
system’s architecture and coarse structure to allow develop-
ers to determine whether or not design contracts have been
broken. Visualization systems can also help to identify the
presence, or absence, of system properties such as reusabil-
ity and maintainability [9]. Graph-based visualizations can
be useful for identifying dependencies between code arti-
facts [12] which can help developers to quickly identify pieces
of code which depend on one and other. This is particularly
important in polymorphic object-oriented environments.

Prawn takes a static, offline approach which limits it from
understanding how the program actually behaves at run-
time. As such, tools such as AVID9 and Jinsight10 are better
suited for identifying performance bottlenecks and system
hot spots. Prawn also is not designed to be used as a visual
debugger. However, since dynamic information is not used,
the code does not need to be instrumented or otherwise al-
tered to collect trace data. Prawn only requires access to a
JAR file containing a compiled representation of the system
in question in order to visualize it.

Sugibib11 optimally draws UML diagrams from source code.
While Prawn would have liked to use this layout package as
a library for node placement, the source of this system is not
in the public domain. Sugibib modifies the Sugiyama [8]
layout model and augments it with changes that adapt it to
be optimal for software systems. This tool also demonstrates
[4] that general approaches can be made more effective when
they are tailored specifically for software visualization.

The Seesoft [2] system employs a different visualization tech-
nique to show how a system has evolved over time. Seesoft
shows individual lines of code as pixels on the screen. Links

9http://www.cs.ubc.ca/labs/spl/projects/avid.html
10http://www.alphaworks.ibm.com/tech/jinsight
11http://www.sugibib.de/english.html

between classes (files) are not shown in the system. This al-
lows Seesoft to scale to systems greater than 1MLOC. The
scalability of this system is its greatest strength, although
details about the complex interactions in the system are lost
by this approach.

4.1 SHriMP
The SHriMP12 tool from the University of Victoria was the
inspiration for Prawn. Our intention was not simply to re-
implement SHriMP, but to find ways to improve on it.

SHriMP allows developers to navigate their source code via
a graph representation within a fish-eye view. It is an offline
viewer that allows the system to be navigated via the link-
ages between classes. Users also have the ability to link di-
rectly from the graph representation to the source code. The
primary display mechanism of SHriMP is a nested graph.
This approach lends itself particularly well to visualizing
software, as often elements are nested inside one other.

SHriMP provides three layout algorithms, two of which are
provided by Prawn. However, the SHriMP layout system
can employ only one layout at a time. Prawn provides ra-
dial layouts, tree layouts, and grid layouts at times when
each seems most appropriate to best present the nodes be-
ing drawn, as well as make the most effective use of available
screen space.

The fisheye view employed by the SHriMP project is more
developed than the Prawn zooming model. Both Prawn and
SHriMP allow a developer to select and enlarge any node
while maintaining the context in which it is placed. How-
ever, SHriMP accomplishes this without having to resize the
ancestor nodes; the siblings of the node are resized to accom-
modate its new size. In Prawn, ancestors are resized if the
new size of the node is sufficiently large. As a result, nodes
are moved off-screen as the graph is navigated to deeper
levels. Neither tool allows a developer to arbitrarily resize a
node, which would greatly increase usability.

Both SHriMP and Prawn have arc filtering capabilities,
and both use colour to distinguish between different kinds of
arcs. However, Prawn gives the developer more flexibility in
showing and displaying arcs, with its Arc Threshold setting,
Arc Width setting, and ability to arbitrarily show, highlight,
or hide arcs from a node. In SHriMP, arc filtering is applied
to the entire graph.

In practise, the authors found SHriMP difficult to use. View-
ing the CSSIS project required the source code to be parsed
using third-party tools, with the results then converted into
the Rigi Standard Format (RSF) that is used by SHriMP.
Loading the CSSIS RSF in SHriMP took approximately 3
times longer than loading a JAR of the CSSIS class files in
Prawn, and used 4 times as much memory. The authors also
were unable to get SHriMP to display CSSIS in a structured
manner; the view presented showed all packages, classes, in-
terfaces and methods in a single graph, rather in the hier-
archy the authors expected.

5. EVALUATION
12http://shrimp.cs.uvic.ca

The current implementation of Prawn has many strengths
and weaknesses. Several of these weaknesses are not due
to technical limitations, but time limitations that prevented
us from implementing them. Work items that are more sub-
stantial are discussed in the future work section of the paper.
The evaluation section takes the form of a task-based anal-
ysis and discussion where Prawn’s suitability for each task
will be discussed.

We have used our tool throughout its development and dur-
ing our scenario generation and we have determined that it
successfully scales to visualize systems of jEdit13 size with
reasonable response times. jEdit is an open-source text edi-
tor written in Java. It is composed of 20 packages containing
644 classes, with approximately 23 270 method calls between
the classes. It should also be noted that Prawn was also able
to load and visualize the Java Runtime Library, which con-
tains 314 packages and 8216 classes, although response times
on an Athlon 750 were on the order of minutes for expanding
a node. Nevertheless, we were able to use Prawn to accom-
plish a number of tasks which would have been cumbersome
with traditional techniques, and would not have been pos-
sible with other similar visualization packages due to the
scaling issue.

5.1 Prawn Strengths
We believe that Prawn has three core strengths: its ease
of creating a visualization, its ability to facilitate the ex-
ploration of a large system, and its ability to reduce the
complexity of a visualization of a system.

These strengths are contingent on providing the most rel-
evant information possible to the developer in a way that
is easy to understand and manipulate. The focus+context
technique used by the tool allows developers to focus on the
nodes they are most interested in. The three layout algo-
rithms help to optimally place nodes so that determining
which nodes to investigate next can be inferred as easily as
possible. The Tree Layout in particular performs a cluster-
ing operation by grouping nodes based on the inheritance
relationships between them. These layouts are augmented
by the colour and transparency elements of the nodes which
allow for easy delineation between the different types of ar-
tifacts on the screen and the relationships between them.
The interaction model allows for simple navigation of the
nodes, as well nesting levels within nodes.

5.1.1 Creating an Initial Visualization
The overhead required to start Prawn and navigate the
source code is minimal. All that needs to be done is for
a JAR of the program’s byte code to be provided on the
command line. Immediately, the Prawn canvas loads along
with a simple command reference and control panel. With
this low overhead, systems can be quickly visualized at any
stage of development to provide updated information about
the system. For example, the authors used Prawn to visual-
ize itself during development and typically it took less than
30 seconds to create the JAR file, start the visualization
program, and start navigating on an Athlon 750.

5.1.2 Large System Exploration
13http://www.jedit.org

Exploring large systems requires that developers can have
fine-grain control of the amount of information they are
seeing, as well as the ability to focus on the aspects of
the system they are interested in, while ignoring the rest.
Prawn facilitates both of these goals through its arc elision
features and its focus+context layout approach.

In the Comprehension and Extension scenario, the author
was first able to elide all arcs except for the structural arcs
within the figure package to gain insight into the key nodes
in the package. While the author examined the figure pack-
age in detail, other packages were not shown in detail so that
they were not a distraction. Later on, the author could have
expanded packages as necessary to understand how classes
in the figure package interacted with them.

Another example of this is the Java Runtime Library. This
large collection of classes is certainly cumbersome to explore
by traditional techniques. However, if a developer were to
take an interest in only the java.util package they could
focus only on that package and ignore the majority of the
classes in the runtime. Also, they could focus only on how
the nodes were placed to see how they are related to one
another. In the case of java.util Prawn clusters the nodes
into 6 primary groups (Collection, SortedSet, Iterator, Map,
Map$Entry, and RandomAccess). This clustering can be
seen in figure 10. From this grouping, it can be seen that
the Collection, Iterator, and Map clusters are the largest,
and as such could be considered the most important, nodes
with which to begin any code examination task.

Figure 10: Part of the java.util package

While experienced developers usually do not need to ex-
plore a system in general, often novice developers require
extra support, especially when learning how to use com-
plex frameworks [3] [5]. This is because frameworks often
lack adequate documentation to help new developers learn
how to use them. However, when users are developing code
within a framework, their simple systems are suddenly a

small part of a large one which is much harder to under-
stand. Using Prawn, these novice developers can see their
system in full detail, while showing only major interconnec-
tions to the framework, which can allow the developer to see
how their work fits into the overall structure of the system.
This can help the developer to understand the implications
of code they are writing, as well as quickly look at more
detail inside the framework itself if greater detail is needed.

5.1.3 Reducing Complexity
One of the primary problems with graph representations is
that they quickly become cluttered and do not scale well [9].
Prawn separates the task of reducing the complexity of the
nodes and the complexity of the arcs into two different prob-
lems. The layout algorithms take care of the placement of
nodes. This includes clustering by inheritance hierarchies,
and using different layouts based upon the kind of nodes that
are being visualized. However, the authors found that the
volume of arcs were the most problematic for large systems.
Therefore, three simple techniques were introduced to make
the graph easier to understand. The arc threshold feature
allows arcs of less than a certain weight to be hidden. This is
particularly effective when a developer is trying to identify
the most important classes in the system, without clutter.
The arc widths feature can be used when it is important
to preserve all available information while highlighting only
the most important arcs. The third technique allows devel-
opers to hide specific classes of arcs. These classes are: All

Arcs, Incoming Arcs, Outgoing Arcs, and Structural

Arcs. These arc elision features can be chosen for whole
packages or just individual nodes depending on what the
cursor is over when the key is selected. Further, the mouse
can be hovered over any node in order to see the full infor-
mation. This allows a clean high-level view while allowing
the low-level details to be quickly determined.

5.2 Prawn Weaknesses
The primary weaknesses of Prawn are directly related to
some of its primary strengths as well. As the authors de-
veloped the tool they implemented the elision and layout
mechanisms that exist in the tool. However, several exten-
sions are required to make these metaphors fully functional,
and to maximize their effectiveness.

The focus+context model could be dramatically improved
to place the context nodes in a more optimal manner. The
current algorithm pushes them to the periphery and does
not consider any form of rank on these context nodes. The
clustering model could be aggregated to arcs such that arcs
going to subclasses could instead go to a superclass or ab-
stract class. This could help reduce the arcs going to sub-
classes, as well as reinforce the connections between different
class hierarchies. The visual encoding scheme could be ex-
tended to include multiple glyph types which would help
to greater differentiate the different nodes as well as sup-
ply extra information about them (perhaps connectedness,
etc). Animated transitions could be used to resize the nodes
when nested structures are opened such that the new nodes
all fit on the screen at once. Also, the text labels on the
nodes should be staggered in some way so that they do not
occlude one another.

5.2.1 Layout

The layout, in particular, is a project unto itself. Simple
layout strategies were identified and implemented in the
project, but a great deal more work could be done in this
case. Prawn does not adequately layout any nodes that are
not involved in inheritance hierarchies. Therefore, simple
utility classes are often grouped into a box layout at the
top of a package structure. As these classes tend to be used
throughout the code these box structures are often difficult
to comprehend. Some form of weighted clustering / layout
should be used so classes which are used often are given
extra space so that it can be clear that they are impor-
tant. Conversely, nodes which are tightly coupled by lots of
calls between them could be clustered together to gain more
of a function-based layout. Implementing advanced algo-
rithms, such as those used by Sugibib could also increase
the effective use of space by the tool. Also, our algorithm
which keeps nodes from overlapping one another is a simple
matter of collision avoidance, and doesn’t try to optimally
place these nodes. Prawn also makes no effort to reduce
edge crossings which can unnecessarily complicate diagrams.
Further arc elision by identifying arcs which are not part of
structural or calling relationships and hiding them could also
help to reduce the number of edges on the graph.

5.2.2 Artifact Manipulation
When navigating the system, often groups of nodes need to
be examined at once. Currently, nodes can only be selected
individually or by packages. Allowing custom node groups
to be selected and manipulated as one would certainly al-
low for custom layouts to be made more easily. Also, arcs
are not updated when nodes are in transition, only when
they are moved to new locations. This can make placing
a node optimally a trial and error operation. However, it
is unlikely that all arcs could be dynamically updated as
the node is dragged. A better solution would be to dy-
namically update as many arcs as possible, giving highest
priority to structural arcs and those with the most calls or
those that are highlighted. This general approach was used
in the H3 system [10]. Supporting text searches, and classi-
fication searches (selecting all interfaces for example) could
also help to select subsets of nodes for group manipulation.

5.3 Lessons Learned
Over the course of this project, we learned several things:

• Creating an effective layout algorithm for placing nodes
in a graph is a very difficult problem.

• Choosing an effective colour scheme is difficult, once
the needs of people who are colour-blind are consid-
ered. Even once the colours have been set, it is easy
to overuse colour, resulting in a display that is highly
cluttered. This was apparent in drawing arcs; arcs
were originally drawn in very dark colours, which made
it very difficult to read the visualization.

• Making the visualization scale beyond trivial examples
required us to investigate how we could convey more
information using a few properties, and how we could
hide unimportant information.

• No matter how advanced the information visualization
techniques are, if the tool requires a significant amount
of effort to use, it will not be adopted in the real world.

• Zoom is not the perfect solution for everything. Zoom-
ing out allows more information to be displayed, but
at the cost of increased clutter.

• Tackling a problem that has seen 10 years of research
in the Rigi and SHriMP projects in the space of one
month was slightly ambitious. But we did better. So
there14.

6. FUTURE WORK
Several work items remain which, if implemented, would
make Prawn a much more complete and effective tool. The
most important, and fundamental of these is integration into
an IDE. This IDE integration would allow for even less over-
head in visualizing systems. The integration would be a
two-way process. Developers browsing the source could pull
up a pictorial representation of the part of the system they
were currently looking at, as well as go from the nodes in
the graph drilling down into the source code. Advanced
querying can also help to reduce the amount of navigation
that is required in the system (for instance, find all occur-
rences of abstract classes which implement an interface and
are extended by these three sample applications).

Further improvements in the visualization could be realized
by only looking at subsets of the graph. Currently nodes
can be collapsed but are still present. Visualizing only one
or two levels from any single node could help to make the
graph size smaller and limit the scope of navigation to nodes
known to be somehow related to the concern being cur-
rently analyzed. Navigation could be simplified by providing
an overview radar view, as well as making the links active
(clicking on a directed link will take you to the target of that
link).

Data flow information can also be integrated into the tool to
see how data is accessed throughout the system. Currently
method data is maintained by the tool but is not used for
anything except for calculating dependencies between nodes.
Further development could allow for drilling into specific
methods in classes to focus only on the dependencies of spe-
cific methods, instead of whole classes. This could also be
useful for determining fine-grain calls and called-by relation-
ships.

Prawn could also annotate the visualization with additional
information from CVS or a bug-tracking database, in addi-
tion to providing links into the source code from the visual-
ization. Tools such as Hipikat15 exist that actively provide
this information to a developer, although they have not been
used in this particular context.

7. CONCLUSION
We have developed the Prawn program visualization tool.
This tool is a static, offline visualization system which is
targeted at developers who need to get a better overview of
how their system’s components interact with one another.
By leveraging the graphical node-link metaphor the details
about how individual methods interact can be aggregated
to classes, packages, and interfaces to reduce the cognitive
load on the developer. The front-end was designed through

14We are being facetious, of course
15http://www.cs.ubc.ca/labs/spl/projects/hipikat.html

an iterative process which took advantage of many informa-
tion visualization techniques to reduce this cognitive load
and increase the effectiveness of the tool. Through a simple
set of scenarios we illustrated three simple tasks that Prawn
can be used for during the development life-cycle. We be-
lieve that with some future work, this tool can be made into
a low-overhead way to help developers quickly understand
complex software systems.

8. REFERENCES
[1] Ronald Baecker, Chris DiGiano, and Aaron Marcus.

Software visualization for debugging. CACM,
40(4):44–54, 1997.

[2] Thomas Ball and Stephen G. Eick. Software
visualization in the large. IEEE Computer,
29(4):33–43, 1996.

[3] G. Butler and P. D’enomm’ee. Documenting
frameworks to assist application developers, 1997.

[4] H. Eichelberger and J. Wolff von Gudenberg. On the
visualization of java programs. In LNCS 2269, S.
Diehl (ed): Software Visualization International
Seminar, pages 295–306. Springer, 2001.

[5] Gerhard Fischer, Scott Henninger, and David F.
Redmiles. Cognitive tools for locating and
comprehending software objects for reuse. In ICSE,
pages 318–328, 1991.

[6] George W. Furnas and Benjamin B. Bederson.
Space-scale diagrams: understanding multiscale
interfaces. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 234–241.
ACM Press/Addison-Wesley Publishing Co., 1995.

[7] S. Tilley H. Müeller, M. Orgun and J. Uhl. A reverse
engineering approach to subsystem structure
identification. Journal of Software Maintenance:
Research and Practice, 5(4):181–204, 1993.

[8] S. Tagawa K. Sugiyama and M. Toda. Methods for
visual understanding of hierarchical systems. In IEEE
Trans. Syst. Man, volume 11, pages 109–125, 1981.

[9] Michael F. Kleyn and Paul C. Gingrich.
Graphtrace–understanding object-oriented systems
using concurrently animated views. In Conference
proceedings on Object-oriented programming systems,
languages and applications, pages 191–205. ACM
Press, 1988.

[10] Tamara Munzner. H3: Laying out large directed
graphs in 3d hyperbolic space”. In Proceedings of the
1997 IEEE Symposium on Information Visualization,
pages 2–10. IEEE Computer Society Press, 1997.

[11] Wim De Pauw, Richard Helm, Doug Kimelman, and
John Vlissides. Visualizing the behavior of
object-oriented systems. In Proceedings of the eighth
annual conference on Object-oriented programming
systems, languages, and applications, pages 326–337.
ACM Press, 1993.

[12] Norman Wilde and Ross Huitt. Maintenance support
for object-oriented programs. IEEE Transactions on
Software Engineering, 18(12):1038–1044, 1992.

[13] J. Wu and M.-A.D. Storey. A multi-perspective
software visualization environment. In Proc. of
CASCON’2000, pages 41–50, 2000.

Figure 6: Prawn Canvas

Figure 7: Prawn Canvas

Figure 8: Prawn Canvas

Figure 9: Prawn Canvas

