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Clipping recap 
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Clipping
• analytically calculating the portions of 

primitives within the viewport
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Clipping Lines To Viewport
• combining trivial accepts/rejects

– trivially accept lines with both endpoints inside all edges of 
the viewport

– trivially reject lines with both endpoints outside the same 
edge of the viewport

– otherwise, reduce to trivial cases by splitting into two 
segments
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Cohen-Sutherland Line Clipping
• outcodes
– 4 flags encoding position of a point relative to top, 

bottom, left, and right boundary

• OC(p1)=0010
• OC(p2)=0000
• OC(p3)=1001

x=x=xxminmin x=x=xxmaxmax

y=y=yyminmin

y=y=yymaxmax

00000000

10101010 10001000 10011001

00100010 00010001

01100110 01000100 01010101

p1p1

p2p2

p3p3
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Polygon Clipping
• not just clipping all boundary lines
– may have to introduce new line segments
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Sutherland-Hodgeman Clipping
• basic idea:

– consider each edge of the viewport individually
– clip the polygon against the edge equation
– after doing all edges, the polygon is fully clipped
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Sutherland-Hodgeman Clipping
• basic idea:

– consider each edge of the viewport individually
– clip the polygon against the edge equation
– after doing all edges, the polygon is fully clipped
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Sutherland-Hodgeman Clipping
• basic idea:

– consider each edge of the viewport individually
– clip the polygon against the edge equation
– after doing all edges, the polygon is fully clipped
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Sutherland-Hodgeman Clipping
• edge from s to p takes one of four cases:

(blue line can be a line or a plane)

inside outside
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p output
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Rotations and Quaternions
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Camera Movement Hints
• change viewing transformation

– don’t try doing this with perspective xform!

• methods
– gluLookAt
– direct camera control using rotate/translate

• camera motion opposite of object motion
– rotate world by a = orbit camera by -a
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Parameterizing Rotations
• Straightforward in 2D

– A scalar, θ, represents rotation in plane

• More complicated in 3D
– Three scalars are required to define 

orientation
– Note that three scalars are also required to 

define position
– Objects free to translate and tumble in 3D 

have 6 degrees of freedom (DOF)
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Representing 3 Rotational DOFs
• 3x3 Matrix (9 DOFs)

– Rows of matrix define orthogonal axes
• Euler Angles (3 DOFs)

– Rot x + Rot y + Rot z
• Axis-angle (4 DOFs)

– Axis of rotation + Rotation amount
• Quaternion (4 DOFs)

– 4 dimensional complex numbers



Week 9, Wed 29 Oct  03 © Tamara Munzner 15

3x3 Rotation Matrix
• 9 DOFs must reduce to 3
• Rows must be unit length (-3 DOFs)
• Rows must be orthogonal (-3 DOFs)
• Drifting matrices is very bad

– Numerical errors results when trying to 
gradually rotate matrix by adding derivatives

– Resulting matrix may scale / shear
– Gram-Schmidt algorithm will re-orthogonalize

• Difficult to interpolate between matrices
– How would you do it?
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Rotation Matrix
• general rotation can be represented by a 

single 3x3 matrix
– length preserving (isometric)
– reflection preserving
– orthonormal

• problem:
– property: rows and columns are orthonormal

(unit length and perpendicular to each other)
– linear interpolation doesn’t maintain this 

property
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Rotation Matrices Not Interpolatable
• interpolate linearly from +90 to -90 in y

• halfway through component interpolation

– problem 1: not a rotation matrix anymore! 
• not orthonormal, x flattened out
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Euler Angles
• (θx, θy, θz) = RzRyRx

– Rotate θx degrees about 
x-axis

– Rotate θy degrees about 
y-axis

– Rotate θz degrees about 
z-axis

• Axis order is not defined
– (y, z, x), (x, z, y), (z, y,x)…

all legal
– Pick one
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Euler Angle Interpolation
• solution 1: can interpolate angles individually
• problem 2: interpolation between two Euler 

angles is not unique
• ex: (x, y, z) rotation

– (0, 0, 0) to (180, 0, 0) vs. (0, 0, 0) to (0, 180, 180)
– interpolation about different axes are not 

independent
– Cartesian coordinates are independent of one 

another, but Euler angles are not
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Interpolation
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Interpolation
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Euler Angles
• Problem 3: Gimbal Lock

– term derived from mechanical problem that arises in 
gimbal mechanism that supports a compass or a gyro

gimbal: hardware
implementation of Euler angles 
(used for mounting gyroscopes 
and globes)
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Gimbal Lock

http://www.anticz.com/eularqua.htmhttp://http://www.anticz.com/eularqua.htmwww.anticz.com/eularqua.htm
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Gimbal Lock
• Occurs when two 

axes are aligned
• Second and third 

rotations have effect 
of transforming 
earlier rotations
– If Rot y = 90 degrees, 

Rot z == -Rot x

[demo]
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Locked Gimbal
•Hardware implementation of Euler 
angles (used for mounting gyroscopes 
and globes)
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Axis-angle Rotation

x

y
θ

z
n=(nx, ny, nz)

A counter-clockwise (right-handed)
rotation θ about the axis specified
by the unit vector n=(nx, ny, nz)
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Axis-angle Notation
• Define an axis of rotation (x, y, z) and a 

rotation about that axis, θ: R(θ, n)
• 4 degrees of freedom specify 3 rotational 

degrees of freedom because axis of 
rotation is constrained to be a unit vector
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Angular displacement

• (θ,n) defines an angular 
displacement of θ about an axis n
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Axis-angle Rotation

r
r’

n

Given
r – Vector in space to rotate
n – Unit-length axis in space about which to rotate
θ – The amount about n to rotate

Solve
r’ – The rotated vector
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Axis-angle Rotation
• step 1

– compute rpar , an extended version of the 
rotation axis n

rpar = (n . r) n

r
r’

rpar
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Axis-angle Rotation
• Compute rperp

• rperp = r – rpar =
r - (n . r) n

r
r’rperp
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Axis-angle Rotation
• Compute v, a vector perpendicular to rpar , rperp

• Use v and rperp and θ to compute r’

v

θ

cos(θ) rperp + sin(θ) v

rp
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Angular Displacement
• R(θ, n) is the rotation matrix to apply to a vector 

v , then,
R[v]=vcosθθθθ + + + + n(n.v)(1-cosθθθθ) + ((((nxv) sinθθθθ
– It guarantees a simple steady rotation 

between any two key orientations
– It defines moves that are independent of the 

choice of the coordinate system
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Axis-angle Notation
• solutions

– any orientation can be represented by a 4-tuple 
angle, vector(x,y,z) 

– can interpolate the angle and axis separately
– no gimbal lock problems!

• problems
– no easy way to determine how to concatenate 

many axis-angle rotations that result in final 
desired axis-angle rotation

• so can’t efficiently compose rotation, must convert to 
matrices first!
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Quaternions
• extend the concept of rotation in 3D to 4D

• avoids the problem of "gimbal-lock" and allows 
for the implementation of smooth and continuous 
rotation

• in effect, they may be considered to add a 
additional rotation angle to spherical coordinates 
ie. longitude, latitude and rotation angles 

• a quaternion is defined using four floating point 
values |x y z w|. These are calculated from the 
combination of the three coordinates of the 
rotation axis and the rotation angle. 
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Quaternions Definition
• Extension of complex numbers 
• 4-tuple of real numbers

– s,x,y,z or [s,v]
– s is a scalar
– v is a vector

• Same information as axis/angle but in a 
different form

• Can be viewed as an original orientation or 
a rotation to apply to an object



Week 9, Wed 29 Oct  03 © Tamara Munzner 37

Quaternion
• Extension of complex numbers: a + ib

– remember i2 = -1
• Quaternion:

– Q = a + bi + cj + dk
• Where i2 = j2 = k2 = -1 and ij = k and ji = -k

– Represented as: q = (s, v) = s + vxi + vyj + vzk
• Invented by Sir William Hamilton (1843)

– carved equation into Dublin bridge when 
discovered after decade of work
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Quaternion
•A quaternion is a 4-D unit vector q = [x y z w]
– It lies on the unit hypersphere x2 + y2 + z2 + w2 = 1

•For rotation about (unit) axis v by angle θ
– vector part = (sin θ/2) v = [x y z]
– scalar part = (cos θ/2)     = w
– (sin(θ/2) nx, sin(θ/2) ny, sin(θ/2) nz, cos (θ/2))

•Only a unit quaternion encodes a rotation 
– must normalize!
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Quaternion
•Rotation matrix corresponding to a quaternion:
– [x y z w] = 

•Quaternion Multiplication
– q1 * q2 = [v1, w1] * [v2, w2] = 

[(w1v2+w2v1+ (v1 x v2)), w1w2-v1.v2]
– quaternion * quaternion = quaternion
– this satisfies requirements for mathematical group
– Rotating object twice according to two different quaternions

is equivalent to one rotation according to product of two 
quaternions
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Quaternion Example
• (sin(θ/2) nx, sin(θ/2) ny, sin(θ/2) nz, , cos 

(θ/2))

• X-roll of π radians [90 º]
– (sin (π/2) (1, 0, 0), cos (π/2)) = ( (1, 0, 0), 0 )

• Y-roll 0f π
– ( (0, 1, 0), 0)

• Z-roll of π
– ( (0, 0, 1), 0)

• Ry (π) followed by Rz (π)
( (0, 1, 0), 0) times ( (0, 0, 1), 0 ) = 
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Quaternion Interpolation
• biggest advantage of quaternions

– cannot linearly interpolate (lerp) between two 
quaternions because it would speed up in middle

– instead, spherical linear interpolation, (slerp)
• ensure vectors remain on the hypersphere
• step through using constant angles
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SLERP
•Quaternion is a point on the 4-D unit sphere
– interpolating rotations requires a unit quaternion at each 

step
• another point on the 4-D unit sphere

– move with constant angular velocity along the great 
circle between two points

•Any rotation is defined by 2 quaternions, so pick 
the shortest SLERP
•To interpolate more than two points, solve a non-
linear variational constrained optimization
– Ken Shoemake in SIGGRAPH ’85 (www.acm.org/dl)
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Quaternion Libraries
• Gamasutra

– Code, explanatory article
– Registration required

http://www.gamasutra.com/features/19980703/quaternions_01.htm
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Evaluating Quaternions
• Advantages:

– Flexible.
– No parametrization singularities (gimbal lock)
– Smooth consistent interpolation of orientations.
– Simple and efficient composition of rotations.

• Disadvantages:
– Each orientation is represented by two quaternions.
– Complex!



Week 9, Wed 29 Oct  03 © Tamara Munzner 45

Summary
• 3x3 matrices

– drifting, can’t interpolate

• Euler angles
– gimbal lock

• axis-angle
– can’t concatenate or interpolate

• quaternions
– solve all problems, but complex
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Project Strategy Suggestion
• debug basics with simple euler angles

– with single drag, does view change the right 
way?

• then can add quaternions 


