
University of British ColumbiaUniversity of British Columbia

CPSC 414 Computer GraphicsCPSC 414 Computer Graphics

© Tamara Munzner 1

Rotations and Quaternions
Week 9, Wed 29 Oct 2003

University of British ColumbiaUniversity of British Columbia

CPSC 414 Computer GraphicsCPSC 414 Computer Graphics

© Tamara Munzner 2

Clipping recap

Week 9, Wed 29 Oct 03 © Tamara Munzner 3

Clipping
• analytically calculating the portions of

primitives within the viewport

Week 9, Wed 29 Oct 03 © Tamara Munzner 4

Clipping Lines To Viewport
• combining trivial accepts/rejects

– trivially accept lines with both endpoints inside all edges of
the viewport

– trivially reject lines with both endpoints outside the same
edge of the viewport

– otherwise, reduce to trivial cases by splitting into two
segments

Week 9, Wed 29 Oct 03 © Tamara Munzner 5

Cohen-Sutherland Line Clipping
• outcodes
– 4 flags encoding position of a point relative to top,

bottom, left, and right boundary

• OC(p1)=0010
• OC(p2)=0000
• OC(p3)=1001

x=x=xxminmin x=x=xxmaxmax

y=y=yyminmin

y=y=yymaxmax

00000000

10101010 10001000 10011001

00100010 00010001

01100110 01000100 01010101

p1p1

p2p2

p3p3

Week 9, Wed 29 Oct 03 © Tamara Munzner 6

Polygon Clipping
• not just clipping all boundary lines
– may have to introduce new line segments

Week 9, Wed 29 Oct 03 © Tamara Munzner 7

Sutherland-Hodgeman Clipping
• basic idea:

– consider each edge of the viewport individually
– clip the polygon against the edge equation
– after doing all edges, the polygon is fully clipped

Week 9, Wed 29 Oct 03 © Tamara Munzner 8

Sutherland-Hodgeman Clipping
• basic idea:

– consider each edge of the viewport individually
– clip the polygon against the edge equation
– after doing all edges, the polygon is fully clipped

Week 9, Wed 29 Oct 03 © Tamara Munzner 9

Sutherland-Hodgeman Clipping
• basic idea:

– consider each edge of the viewport individually
– clip the polygon against the edge equation
– after doing all edges, the polygon is fully clipped

Week 9, Wed 29 Oct 03 © Tamara Munzner 10

Sutherland-Hodgeman Clipping
• edge from s to p takes one of four cases:

(blue line can be a line or a plane)

inside outside

s

p

p output

inside outside

s

p

no output

inside outside

s
p

i output

inside outside

sp

i output
p output

University of British ColumbiaUniversity of British Columbia

CPSC 414 Computer GraphicsCPSC 414 Computer Graphics

© Tamara Munzner 11

Rotations and Quaternions

Week 9, Wed 29 Oct 03 © Tamara Munzner 12

Camera Movement Hints
• change viewing transformation

– don’t try doing this with perspective xform!

• methods
– gluLookAt
– direct camera control using rotate/translate

• camera motion opposite of object motion
– rotate world by a = orbit camera by -a

Week 9, Wed 29 Oct 03 © Tamara Munzner 13

Parameterizing Rotations
• Straightforward in 2D

– A scalar, θ, represents rotation in plane

• More complicated in 3D
– Three scalars are required to define

orientation
– Note that three scalars are also required to

define position
– Objects free to translate and tumble in 3D

have 6 degrees of freedom (DOF)

Week 9, Wed 29 Oct 03 © Tamara Munzner 14

Representing 3 Rotational DOFs
• 3x3 Matrix (9 DOFs)

– Rows of matrix define orthogonal axes
• Euler Angles (3 DOFs)

– Rot x + Rot y + Rot z
• Axis-angle (4 DOFs)

– Axis of rotation + Rotation amount
• Quaternion (4 DOFs)

– 4 dimensional complex numbers

Week 9, Wed 29 Oct 03 © Tamara Munzner 15

3x3 Rotation Matrix
• 9 DOFs must reduce to 3
• Rows must be unit length (-3 DOFs)
• Rows must be orthogonal (-3 DOFs)
• Drifting matrices is very bad

– Numerical errors results when trying to
gradually rotate matrix by adding derivatives

– Resulting matrix may scale / shear
– Gram-Schmidt algorithm will re-orthogonalize

• Difficult to interpolate between matrices
– How would you do it?

Week 9, Wed 29 Oct 03 © Tamara Munzner 16

Rotation Matrix
• general rotation can be represented by a

single 3x3 matrix
– length preserving (isometric)
– reflection preserving
– orthonormal

• problem:
– property: rows and columns are orthonormal

(unit length and perpendicular to each other)
– linear interpolation doesn’t maintain this

property

�
�
�

�

�

�
�
�

�

�

=

zyx

zyx

zyx

www

vvv

uuu

R

Week 9, Wed 29 Oct 03 © Tamara Munzner 17

Rotation Matrices Not Interpolatable
• interpolate linearly from +90 to -90 in y

• halfway through component interpolation

– problem 1: not a rotation matrix anymore!
• not orthonormal, x flattened out

� �
	

	

	
� �

0 0 1
0 1 0
-1 0 0

� �
	

	

	
� �

0 0 -1
0 1 0
1 0 0

� �
	

	

	
� �

0 0 0
0 1 0
0 0 0

Week 9, Wed 29 Oct 03 © Tamara Munzner 18

Euler Angles
• (θx, θy, θz) = RzRyRx

– Rotate θx degrees about
x-axis

– Rotate θy degrees about
y-axis

– Rotate θz degrees about
z-axis

• Axis order is not defined
– (y, z, x), (x, z, y), (z, y,x)…

all legal
– Pick one

Week 9, Wed 29 Oct 03 © Tamara Munzner 19

Euler Angle Interpolation
• solution 1: can interpolate angles individually
• problem 2: interpolation between two Euler

angles is not unique
• ex: (x, y, z) rotation

– (0, 0, 0) to (180, 0, 0) vs. (0, 0, 0) to (0, 180, 180)
– interpolation about different axes are not

independent
– Cartesian coordinates are independent of one

another, but Euler angles are not

Week 9, Wed 29 Oct 03 © Tamara Munzner 20

Interpolation

Week 9, Wed 29 Oct 03 © Tamara Munzner 21

Interpolation

Week 9, Wed 29 Oct 03 © Tamara Munzner 22

Euler Angles
• Problem 3: Gimbal Lock

– term derived from mechanical problem that arises in
gimbal mechanism that supports a compass or a gyro

gimbal: hardware
implementation of Euler angles
(used for mounting gyroscopes
and globes)

Week 9, Wed 29 Oct 03 © Tamara Munzner 23

Gimbal Lock

http://www.anticz.com/eularqua.htmhttp://http://www.anticz.com/eularqua.htmwww.anticz.com/eularqua.htm

Week 9, Wed 29 Oct 03 © Tamara Munzner 24

Gimbal Lock
• Occurs when two

axes are aligned
• Second and third

rotations have effect
of transforming
earlier rotations
– If Rot y = 90 degrees,

Rot z == -Rot x

[demo]

Week 9, Wed 29 Oct 03 © Tamara Munzner 25

Locked Gimbal
•Hardware implementation of Euler
angles (used for mounting gyroscopes
and globes)

Week 9, Wed 29 Oct 03 © Tamara Munzner 26

Axis-angle Rotation

x

y
θ

z
n=(nx, ny, nz)

A counter-clockwise (right-handed)
rotation θ about the axis specified
by the unit vector n=(nx, ny, nz)

Week 9, Wed 29 Oct 03 © Tamara Munzner 27

Axis-angle Notation
• Define an axis of rotation (x, y, z) and a

rotation about that axis, θ: R(θ, n)
• 4 degrees of freedom specify 3 rotational

degrees of freedom because axis of
rotation is constrained to be a unit vector

Week 9, Wed 29 Oct 03 © Tamara Munzner 28

Angular displacement

• (θ,n) defines an angular
displacement of θ about an axis n

v

⊥v

||v

n

⊥× vn
][⊥vR

θ

||||

||||

][

sin)(cos

sin)(cos][

)(

vvR

vnv

vnvvR

vvvnvnv

=
×+=
×+=

−=⋅=

⊥

⊥⊥⊥

⊥

θθ
θθ

θθθ
θθ

θθ

sin)()cos1)((cos

sin)(cos))(()(

sin)(cos][][][][||||||

vnvnnv

vnnvnvnvn

vnvvvRvRvvRvR

×+−⋅+=
×+⋅−+⋅=

×++=+=+= ⊥⊥⊥

Week 9, Wed 29 Oct 03 © Tamara Munzner 29

Axis-angle Rotation

r
r’

n

Given
r – Vector in space to rotate
n – Unit-length axis in space about which to rotate
θ – The amount about n to rotate

Solve
r’ – The rotated vector

Week 9, Wed 29 Oct 03 © Tamara Munzner 30

Axis-angle Rotation
• step 1

– compute rpar , an extended version of the
rotation axis n

rpar = (n . r) n

r
r’

rpar

Week 9, Wed 29 Oct 03 © Tamara Munzner 31

Axis-angle Rotation
• Compute rperp

• rperp = r – rpar =
r - (n . r) n

r
r’rperp

Week 9, Wed 29 Oct 03 © Tamara Munzner 32

Axis-angle Rotation
• Compute v, a vector perpendicular to rpar , rperp

• Use v and rperp and θ to compute r’

v

θ

cos(θ) rperp + sin(θ) v

rp

Week 9, Wed 29 Oct 03 © Tamara Munzner 33

Angular Displacement
• R(θ, n) is the rotation matrix to apply to a vector

v , then,
R[v]=vcosθθθθ + + + + n(n.v)(1-cosθθθθ) + ((((nxv) sinθθθθ
– It guarantees a simple steady rotation

between any two key orientations
– It defines moves that are independent of the

choice of the coordinate system

Week 9, Wed 29 Oct 03 © Tamara Munzner 34

Axis-angle Notation
• solutions

– any orientation can be represented by a 4-tuple
angle, vector(x,y,z)

– can interpolate the angle and axis separately
– no gimbal lock problems!

• problems
– no easy way to determine how to concatenate

many axis-angle rotations that result in final
desired axis-angle rotation

• so can’t efficiently compose rotation, must convert to
matrices first!

Week 9, Wed 29 Oct 03 © Tamara Munzner 35

Quaternions
• extend the concept of rotation in 3D to 4D

• avoids the problem of "gimbal-lock" and allows
for the implementation of smooth and continuous
rotation

• in effect, they may be considered to add a
additional rotation angle to spherical coordinates
ie. longitude, latitude and rotation angles

• a quaternion is defined using four floating point
values |x y z w|. These are calculated from the
combination of the three coordinates of the
rotation axis and the rotation angle.

Week 9, Wed 29 Oct 03 © Tamara Munzner 36

Quaternions Definition
• Extension of complex numbers
• 4-tuple of real numbers

– s,x,y,z or [s,v]
– s is a scalar
– v is a vector

• Same information as axis/angle but in a
different form

• Can be viewed as an original orientation or
a rotation to apply to an object

Week 9, Wed 29 Oct 03 © Tamara Munzner 37

Quaternion
• Extension of complex numbers: a + ib

– remember i2 = -1
• Quaternion:

– Q = a + bi + cj + dk
• Where i2 = j2 = k2 = -1 and ij = k and ji = -k

– Represented as: q = (s, v) = s + vxi + vyj + vzk
• Invented by Sir William Hamilton (1843)

– carved equation into Dublin bridge when
discovered after decade of work

Week 9, Wed 29 Oct 03 © Tamara Munzner 38

Quaternion
•A quaternion is a 4-D unit vector q = [x y z w]
– It lies on the unit hypersphere x2 + y2 + z2 + w2 = 1

•For rotation about (unit) axis v by angle θ
– vector part = (sin θ/2) v = [x y z]
– scalar part = (cos θ/2) = w
– (sin(θ/2) nx, sin(θ/2) ny, sin(θ/2) nz, cos (θ/2))

•Only a unit quaternion encodes a rotation
– must normalize!

Week 9, Wed 29 Oct 03 © Tamara Munzner 39

Quaternion
•Rotation matrix corresponding to a quaternion:
– [x y z w] =

•Quaternion Multiplication
– q1 * q2 = [v1, w1] * [v2, w2] =

[(w1v2+w2v1+ (v1 x v2)), w1w2-v1.v2]
– quaternion * quaternion = quaternion
– this satisfies requirements for mathematical group
– Rotating object twice according to two different quaternions

is equivalent to one rotation according to product of two
quaternions

�

�

	
	
	

�

�

−−−+
+−−−
−+−−

22

22

22

2212222
2222122

2222221

yxwxyzwyxz

wxyzzxwzxy

wyxzwzxyzy

Week 9, Wed 29 Oct 03 © Tamara Munzner 40

Quaternion Example
• (sin(θ/2) nx, sin(θ/2) ny, sin(θ/2) nz, , cos

(θ/2))

• X-roll of π radians [90 º]
– (sin (π/2) (1, 0, 0), cos (π/2)) = ((1, 0, 0), 0)

• Y-roll 0f π
– ((0, 1, 0), 0)

• Z-roll of π
– ((0, 0, 1), 0)

• Ry (π) followed by Rz (π)
((0, 1, 0), 0) times ((0, 0, 1), 0) =

Week 9, Wed 29 Oct 03 © Tamara Munzner 41

Quaternion Interpolation
• biggest advantage of quaternions

– cannot linearly interpolate (lerp) between two
quaternions because it would speed up in middle

– instead, spherical linear interpolation, (slerp)
• ensure vectors remain on the hypersphere
• step through using constant angles

Week 9, Wed 29 Oct 03 © Tamara Munzner 42

SLERP
•Quaternion is a point on the 4-D unit sphere
– interpolating rotations requires a unit quaternion at each

step
• another point on the 4-D unit sphere

– move with constant angular velocity along the great
circle between two points

•Any rotation is defined by 2 quaternions, so pick
the shortest SLERP
•To interpolate more than two points, solve a non-
linear variational constrained optimization
– Ken Shoemake in SIGGRAPH ’85 (www.acm.org/dl)

Week 9, Wed 29 Oct 03 © Tamara Munzner 43

Quaternion Libraries
• Gamasutra

– Code, explanatory article
– Registration required

http://www.gamasutra.com/features/19980703/quaternions_01.htm

Week 9, Wed 29 Oct 03 © Tamara Munzner 44

Evaluating Quaternions
• Advantages:

– Flexible.
– No parametrization singularities (gimbal lock)
– Smooth consistent interpolation of orientations.
– Simple and efficient composition of rotations.

• Disadvantages:
– Each orientation is represented by two quaternions.
– Complex!

Week 9, Wed 29 Oct 03 © Tamara Munzner 45

Summary
• 3x3 matrices

– drifting, can’t interpolate

• Euler angles
– gimbal lock

• axis-angle
– can’t concatenate or interpolate

• quaternions
– solve all problems, but complex

Week 9, Wed 29 Oct 03 © Tamara Munzner 46

Project Strategy Suggestion
• debug basics with simple euler angles

– with single drag, does view change the right
way?

• then can add quaternions

