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Clipping

 analytically calculating the portions of
primitives within the viewport

/

S
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Clipping Lines To Viewport

« combining trivial accepts/rejects

— trivially accept lines with both endpoints inside all edges of
the viewport

— trivially reject lines with both endpoints outside the same
edge of the viewport

— otherwise, reduce to trivial cases by splitting into two
segments

T/
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Cohen-Sutherland Line Clipping

e outcodes

— 4 flags encoding position of a point relative to top,
bottom, left, and right boundary

. OC(p1)=0010
. OC(p2)=0000
. OC(p3)=1001
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Polygon Clipping

* not just clipping all boundary lines
— may have to introduce new line segments
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Sutherland-Hodgeman Clipping

 basic idea:
— consider each edge of the viewport individually
— clip the polygon against the edge equation
— after doing all edges, the polygon is fully clipped
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Sutherland-Hodgeman Clipping

 basic idea:
— consider each edge of the viewport individually
— clip the polygon against the edge equation
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Sutherland-Hodgeman Clipping

» edge from s to p takes one of four cases:
(blue line can be a line or a plane)
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Camera Movement Hints

» change viewing transformation
—don’t try doing this with perspective xform!

* methods
— gluLookAt
— direct camera control using rotate/translate

« camera motion opposite of object motion
— rotate world by a = orbit camera by -a
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Parameterizing Rotations

o Straightforward in 2D
— A scalar, 0, represents rotation in plane

* More complicated in 3D

— Three scalars are required to define
orientation

— Note that three scalars are also required to
define position

— Objects free to translate and tumble in 3D
have 6 degrees of freedom (DOF)
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Representing 3 Rotational DOFs

- 3x3 Matrix (9 DOFs)
— Rows of matrix define orthogonal axes

* Euler Angles (3 DOFs)
— Rot x + Roty + Rot z
« Axis-angle (4 DOFs)
— Axis of rotation + Rotation amount

« Quaternion (4 DOFs)
— 4 dimensional complex numbers
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3x3 Rotation Matrix
9 DOFs must reduce to 3

Rows must be unit length (-3 DOFs)
Rows must be orthogonal (-3 DOFs)

Drifting matrices is very bad

— Numerical errors results when trying to
gradually rotate matrix by adding derivatives

— Resulting matrix may scale / shear
— Gram-Schmidt algorithm will re-orthogonalize

Difficult to interpolate between matrices
— How would you do it?
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Rotation Matrix

» general rotation can be represented by a
single 3x3 matrix
— length preserving (isometric) (',
— reflection preservin
P J R=|v, v, v
— orthonormal * Y ¢
« problem: e Wy W
— property: rows and columns are orthonormal
(unit length and perpendicular to each other)

— linear interpolation doesn’t maintain this
property
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Rotation Matrices Not Interpolatable

* interpolate linearly from +90t0 -90 iny

0 0 1 0 0 -1

0 10 01 0

10 0 1.0 0
 halfway through component interpolation

0 0 0
0 1 0
00 0

— problem 1: not a rotation matrix anymore!
* not orthonormal, x flattened out
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0 cosf) sinf, |
0 —sin @, cosf;, |
0 () ]

Euler Angles
. (6, 6,,0,) = R,R,R

z' 'yl X
— Rotate 0, degrees about

X-axis
— Rotate 6, degrees about [0 e

. s yeroll (6,) = 0

y-axis y T e o i
— Rotate 0, degrees about "

Z-axis :

* AXis order is not defined

— (Y, 2, X), (X, Z, ), (2, ¥,X)...
all legal

— Pick one

0 (0 1

0, cosfy sinfy 0
z-roll (6s) = | —sinfly cosB; 0
] () () i
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Euler Angle Interpolation

» solution 1: can interpolate angles individually

» problem 2: interpolation between two Euler
angles is not unigue

* ex: (X, Y, z) rotation
— (0, 0, 0) to (180, 0, 0) vs. (0, 0, 0) to (0, 180, 180)

— interpolation about different axes are not
independent

— Cartesian coordinates are independent of one
another, but Euler angles are not
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Interpolation

.
R R ﬂ £
y y + y y
n
n X x X
— —
x-roll = y-roll
2z Z 2z
=)

Figure 15.19 Euler angle parametrization. (a) A single x-roll of . (b) A y-roll of « followed by a zroll of .
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Euler Angles

« Problem 3: Gimbal Lock

— term derived from mechanical problem that arises in

gimbal mechanism that supports a compass or a gyro
X

Z

gimbal: hardware
implementation of Euler angles

(used for mounting gyroscopes
and globes)

Gimbal
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Gimbal Lock

gimbal .gh——-0Orientation Interaction Tester

Quit Reset Gen Test Done Test Matrix Help

® Y

-29

-7

X |-29 ¥: |43 £ -7

Start Stop Clear Store | Counter: 4.79 Memory: Z2.26

nip:/rwvew.anticz.com/zulargua.ntm
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Gimbal Lock

* Occurs when two
axes are aligned

 Second and third A
rotations have effect ﬁ
of transforming . AT
earlier rotations P(;

— |f Rot y = 90 degreeS, Y 0B

x-roll U;

x-roll 8, followed by y-roll /2

>0
S
[demo] :
; followed by z-roll #;
C) 0, z-roll ¢y same as x-roll — @,
X
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Locked Gimbal

Hardware implementation of Euler
angles (used for mounting gyroscopes
and alobes)

X X
Z Z

=)

y y
Gimbal Locked Gimbal

Week 9, Wed 29 Oct 03 © Tamara Munzner

25



Axis-angle Rotation

n=(n, n, n,)

Y

A counter-clockwise (right-handed)
rotation O about the axis specified

by the unit vector n=(n,, n,, n,)
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Axis-angle Notation

* Define an axis of rotation (X, y, z) and a
rotation about that axis, 0: R(6, n)

» 4 degrees of freedom specify 3 rotational
degrees of freedom because axis of
rotation is constrained to be a unit vector
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Angular displacement

* (0,n) defines an angular -
displacement of 6 about an axis n

vy=(m-vin v, =v—y,

R[v, ]=v,cos@+(nxv, )sinb

=v, cos@+(nxv)sin @
Rlvw ] =v,

Rv]=R[v,+v, ] =R[v]+R[v, ] =v,+v, cos@+(nXv)sin @

=(m-v)nt(v—(n-v)n)cos@ +(nxv)siné

=vcos@+n(n-v)(1-cos@) +(nxv)sinf
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Axis-angle Rotation

Given
r — Vector 1n space to rotate
n — Unit-length axis in space about which to rotate
0 — The amount about n to rotate

Solve
I’ — The rotated vector
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Axis-angle Rotation

» step 1
— compute r,,, , an extended version of the
rotation axis n

Fpar = (N - 1) N
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Axis-angle Rotation

» Compute r,q,
* rperp =I—= rpar =
r-(n.rn
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« Compute v, a vector perpendicular to r

Axis-angle Rotation

Usevand r

Week 9, Wed 29 Oct 03

perp

and 6 to compute r’

cos(0) I, + sin(0) v

perp

.....
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r

par * ' perp
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Angular Displacement

* R(06, n) is the rotation matrix to apply to a vector
VvV , then,

R[v]=vcosb + n(n.v)(1-cos0O) + (nxv) sind

— It guarantees a simple steady rotation
between any two key orientations

— It defines moves that are independent of the
choice of the coordinate system

Week 9, Wed 29 Oct 03 © Tamara Munzner 33



Axis-angle Notation

e solutions

— any orientation can be represented by a 4-tuple
angle, vector(x,y,z)

— can interpolate the angle and axis separately

— no gimbal lock problems!

* problems

— no easy way to determine how to concatenate
many axis-angle rotations that result in final
desired axis-angle rotation

« so can't efficiently compose rotation, must convert to
matrices first!
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Quaternions

extend the concept of rotation in 3D to 4D

avoids the problem of "gimbal-lock™ and allows
for the implementation of smooth and continuous
rotation

in effect, they may be considered to add a_
additional rotation angle to spherical coordinates
le. longitude, latitude and rotation angles

a quaternion is defined using four floating point
values |x y z w|. These are calculated from the
combination of the three coordinates of the
rotation axis and the rotation angle.
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Quaternions Definition

Extension of complex numbers
4-tuple of real numbers
—S,X,Y,Z or [S,V]

— S Is a scalar

—V IS a vector

Same information as axis/angle but in a
different form

Can be viewed as an original orientation or
a rotation to apply to an object
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Quaternion

» Extension of complex numbers: a + ib
— remember i = -1

« Quaternion:
—Q=a+bi+cj+dk
« Where i =j?=k?=-1and ij=k and ji = -k
— Represented as: q = (s, V) =S + Vi + V] + VK
 [nvented by Sir William Hamilton (1843)

— carved equation into Dublin bridge when
discovered after decade of work
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Quaternion

A quaternion is a 4-D unit vectorg =[xy z W]
— It lies on the unit hypersphere x? + y2 + z2 + w? = 1

For rotation about (unit) axis v by angle 6
— vector part=(sin6/2) v =[xy Z]

— scalar part = (cos 6/2) =w

— (sin(6/2) n,, sin(6/2) n,, sin(6/2) n, cos (6/2))
*Only a unit quaternion encodes a rotation

— must normalize!
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Quaternion

*Rotation matrix corresponding to a quaternion:

Xy zw]= )
1-2y*—27"  2xy+2wz  2xz-2wy

2xy—2wz 1-2x"=27"  2yz4+2wx

2xz+2wy  2yz—2wx 1-2x" -2y’

«Quaternion Multiplication

Oy * dp = [Vq, Wq] ™ [Vo, Wy] =

[(Wy Vot WoVi+ (V4 X Vp)), WyWp-Vy.Vy)
guaternion * quaternion = quaternion
this satisfies requirements for mathematical group

Rotating object twice according to two different quaternions
IS equivalent to one rotation according to product of two

guaternions
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Quaternion Example

* (sin(6/2) n,, sin(6/2) n,, sin(6/2) n, , cos
(6/2))

« X-roll of ® radians [90 9]
— (sin (w/2) (1, 0, 0), cos (1/2))
 Y-roll Of
—( (0, 1, 0), 0)
o« Z-roll of
—((0, 0, 1), 0)
+ R, () followed by R (n)

Woel NWed 29Q5t OA\\ 4in e 7 7N GHaMER MpgzRer

((1,0,0),0)
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Quaternion Interpolation

* biggest advantage of quaternions

— cannot linearly interpolate (lerp) between two
guaternions because it would speed up in middle

— Instead, spherical linear interpolation, (slerp)
« ensure vectors remain on the hypersphere
« step through using constant angles

n3
0
| i
4 .-..-ff.l'

Lerping Slerping
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SLERP

*Quaternion is a point on the 4-D unit sphere

— Interpolating rotations requires a unit quaternion at each
step
 another point on the 4-D unit sphere

— move with constant angular velocity along the great
circle between two points

*Any rotation is defined by 2 quaternions, so pick

the shortest SLERP

*To interpolate more than two points, solve a non-
linear variational constrained optimization
— Ken Shoemake in SIGGRAPH °85 (www.acm.org/dl)
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Quaternion Libraries

« Gamasutra
— Code, explanatory article
— Registration required

http://www.gamasutra.com/features/19980703/quaternions_01.htm

Week 9, Wed 29 Oct 03 © Tamara Munzner

43



Evaluating Quaternions

» Advantages:
— Flexible.
— No parametrization singularities (gimbal lock)
— Smooth consistent interpolation of orientations.
— Simple and efficient composition of rotations.

» Disadvantages:
— Each orientation is represented by two quaternions.
— Complex!
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Summary

3x3 matrices

— drifting, can’t interpolate

Euler angles

— gimbal lock

axis-angle

— can't concatenate or interpolate

quaternions
— solve all problems, but complex
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Project Strategy Suggestion

» debug basics with simple euler angles

— with single drag, does view change the right
way?

» then can add quaternions
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