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News
* project 1
—solution today
— hall of fame next week
« great work!!
* extra office hours
—Fri 10-11 usual, 11-1:30 extra lab hours
—Mon 10/13 no class, no office hours
—Tue 11-1 extra lab hours,
« 4-5:30 my office hours rescheduled (FSC2618)
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News

« Office hours reminder: FSC 2618
—Mondays 10:30-11:30 or by appointment
—exceptions: Oct 20, Nov 10

» Readings
—Chap 8.9-8.11, Fri 10/3 slide notes
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Barycentric Coordinates recap

+ weighted combination of vertices

P=a-F+B-P, + 7P

a+pfB+y=1
0<a,fB,7<1 B (1,00
“convex combination ﬂ =0
of points™ (0,0,1) ﬂ =05
B
B=1
B, (010
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Transforming Normals

+ nonuniform scaling does not work
+ x-y=0 plane
—line x=y
—normal: [1,-1,0]
« ignore normalization for now
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Transforming Normals

+ apply nonuniform scale: stretch along x by 2
—new plane x = 2y

« transformed normal =
V|

27 [2 0 0 o1 N
-] [0 1 0 of -1 \

o I B 515 00 o]t
0] o oo 1o S0 10 of
2x—y =0 (2x=y) o[ fo o1 ofo
—not perpendicular! 0] [0 00 1][O

should be x-2y=0 (x = 2y)
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Finding Correct Normal Transform

* transform a plane
P _ P'=MP i yexnowm,
N N'=(QN  whatshould Qbe?
NT P'=0
(ON)" (MP)=0
NTQT ﬂ gP — 0
NTP:() true if QTM =]

g\ thus the normal to any surface has to be
Q = (M ) transformed by the inverse transpose of the
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stay perpendicular

substitute from above

(AB)" =B"A"

modelling transformation
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Samples
most things in the real world are continuous
everything in a computer is discrete
+ the process of mapping a continuous function to a
discrete one is called sampling
+ the process of mapping a discrete function to a
continuous one is called reconstruction
+ the process of mapping a continuous variable to a
discrete one is called quantization
rendering an image requires sampling and
quantization

displaying an image involves reconstruction
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Displays — Signal Reconstruction

+ All physical displays recreate a continuous
image from a discrete sampled image by
using a finite sized source of light for each
pixel.

eflf -1 H
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Imaging Devices Area Sample

« video camera : CCD array.

Vzkﬂldxdy

X,y
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Imaging Devices Area Sample

« eye : photoreceptors

~0.47 deg.
Filmis similar : iregular
array of receptors.

1.0pt. Soc. Am. A
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Continuous Luminosity Signal

Original

scene

Luminosity
signal

Slide © Rosake Nerheim-Wolfe
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Sampled Luminosity

Sampling at

pixel centers

Sampled
signal

Slide © Rosake Nerheim-Wolfe
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Reconstructed Luminosity

Rendered

image

Luminosity
signal

Slide © Rosake Nerheim-Wolfe
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Reconstruction Artefact

Jagged profiles

Slide © Rosake Nerheim-Wolfe
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Bad Solution for Jaggies

* blurring final image
-
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Line Segments

+ we tried to sample a line segment so it
would map to a 2D raster display

» we quantized the pixel values to 0 or 1
+ we saw stair steps, or jaggies

Week 6, Fri 10 Oct 03 © Tamara Munzner 18




Line Segments

* instead, quantize to many shades
« but what sampling algorithm is used?
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Area Sampling

+ shade pixels according to the area covered by
thickened line

« this is unweighted area sampling
[
P

mi—

+ arough approximation formulated by dividing each
pixel into a finer grid of pixels
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Unweighted Area Sampling

+ primitive cannot affect intensity of pixel if it
does not intersect the pixel
» equal areas cause equal intensity,

regardless of distance from pixel center to
area
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Weighted Area Sampling

+ unweighted sampling colors two pixels
identically when the primitive cuts the
same area through the two pixels

« intuitively, pixel cut through the center
should be more heavily weighted than one
cut along corner
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Weighted Area Sampling

+ weighting function, W(x,y)
— specifies the contribution of primitive
passing through the point (x, y) from pixel
center

Intensity

W(xy)

AN

X
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Images

+ animage is a 2D function I(x, y) that
specifies intensity for each point (x, y)

An image seen as a continuous 2D function
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Sampling and Image

« our goal is to convert the continuous
image to a discrete set of samples

« the graphics system’s display hardware
will attempt to reconvert the samples into a
continuous image: reconstruction
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Point Sampling an Image

* simplest sampling is on a grid
» sample depends
solely on value

at grid points
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Point Sampling

» multiply sample grid by image intensity to
obtain a discrete set of points, or samples.
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Sampling Errors

» some objects missed entirely, others
poorly sampled
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Fixing Sampling Errors

* supersampling
—take more than one sample for each pixel and
combine them

« how many 150x15 to 100x10
samples is
enough? 200x20 to 100x10|

+ how do we 00x30 to 100x10|
know no
features are 400x40 to 100x10
lost?
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Spectral/Fourier Analysis

+ spectral representation treats the function as
a weighted sum of sines and cosines
« every function has two representations
— spatial (time) domain - normal representation
— frequency domain - spectral representation
 Fourier transform converts between the
spatial and frequency domains.
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Spatial Domain

 image as spatial signal

Intensity

Original
signal

Pixel position across scanline
Examples from Foley, van Dam, Feiner, and Hughes

Spatial Frequency

* intime - cycles per second
* in space - cycles per meter, degree, etc.

« Fourier view: sum of signals
— pick frequency, phase shift
—familiar example: sound spectrum
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Summing Waves |l

‘/+\ Yoo e
AN
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Summing Waves |
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Waves as Frequencies
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Frequency Domain

* height represents strength of each frequency
—sine wave: impulse
—square wave: infinite train of impulses

= = — 256
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| | 128 |
‘ 64 |
SR { > b ‘,, S 0 e il -
0 128 256 384 512 -5 25, .0 5 8
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Spectral/Fourier Analysis

* Fourier transform converts between the spatial
and frequency domain

F()= [ fe™dx

15 iax
f(x)—ﬁiF(a))e dw

Spatial domain Frequency domain.

« Euler formula: ¢” =cost+isint
— real and imaginary components

« forward and reverse transforms very similar
— reversal in sign of imaginary component, scale constant
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Fourier Analysis
+ convert spatial domain to frequency domain
Flu) = rﬂx)[cos 2arux — isin 2muxldy,

— let f(x) indicate the intensity at a location in space, x
(pixel value)

— u is a complex number representing frequency and
phase shift
« i=sqrt(-1) ... frequently not plotted
— F(u) is the amplitude of a particular frequency in a signal

« in this case the signal is f(x)
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Fourier Transform Example

spatial domain frequency domain

6 192 256 -25
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A = M Q

Sampling Theorem

the ideal samples of a continuous function
contain all the information in the original
function if and only if the continuous function
is sampled at a frequency greater than twice
the highest frequency in the function

- Claude Shannon
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Spatial and Frequency Domain

Spatial Domain

Frequency Domain

5248 Fall 98 Lectore & Gopyright  Pat Hanrahan

Nyquist Rate

+ the lower bound on the sampling rate
equals twice the highest frequency
component in the image’s spectrum

« this lower bound is the Nyquist Rate
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Falling Below Nyquist Rate

» when sampling below Nyquist Rate,
resulting signal looks like a lower-
frequency one
—this is aliasing!

Fig. 14.17 Sampling below the Nyquist rate. (Courtesy of George Wolberg, Colum
bia University.)
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Falling Below Nyquist Rate

» when sampling below Nyquist Rate, resulting
signal looks like a lower-frequency one
— safe with band-limits, guarantee that samples
are not derived from signal of higher frequency

Fig. 14.17 Sampling below the Nyquist rate. (Courtesy of George Wolberg, Colum
bia University.)
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Band-limited Signals

« if you know a function contains no

components of frequencies higher than x

— band-limited implies original function will not
require any ideal functions with frequencies
greater than x

— facilitates reconstruction

— avoids Nyquist Limit mistakes
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Flaws with Nyquist Rate

» samples may not align with peaks

A /’\;\ S
e }‘/ i
- Wy

etween peaks, (c) at zero
rsity.)

©
is. 14.16 Sampiing at the Nyquist rate (a) at px
lgossings.  (Courtesy of George Wolberg, Columi
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Filtering

* low pass

* high pass

© Tamara Munzner
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Filtering

+ to lower Nyquist rate, remove high
frequencies from image: low-pass filter
—only low frequencies remain: band-limited
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Filtering in Space Domain

* blurring or averaging pixels together.
h(x)

ol M

h()=f®g=[f(x)g0x—y)dy
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Filtering in Frequency Domain

» multiply signal’s spectrum by pulse function
T e [ | ] e |
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Filter

Filtering

* sinc (pulse) function is common filter:
—sinc(x) = sin (nx)/nx

Spatial Domain Frequency Domain

M sinc(x)

L.A‘<'. V\/va‘
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Sinc Filter

+ Slide filter along
spatial domain
and compute
new pixel value
that results from
convolution ORI S el PPV

(
Ty

b " Py
iy e
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Convolution

 multiplying two Fourier Transforms (F(u)G(u))
in the frequency domain == convolution
(represented as *) on their inverse Fourier
transforms in the spatial domain

< f(0) " 9(x) = h(x)

— take the filter function, g(x) and center it at x

— take a weighted average of f(x) in the neighborhood
of x
« weighting defined by g(x)
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Sampling in Frequency Domain

» remember, sampling was defined as
multiplying a grid of delta functions by the
continuous image

« called a convolution in spatial domain

s(x) S(u)
sampling grid | | x - T T % T T”
) Fw
function being sampled "\/\/ -
X u
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Sampling

+ Multiplication of the sample with a regular train
of delta functions.

JA%N
MXMN?M
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Convolution
+ This amounts to accumulating copies of

the function’s spectrum sampled at the
delta functions of the sampling grid

fx)s(x) F(w)*S(u)
—
X u
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Convolution theorem.

» Theorem: Multiplication in the frequency
domain is equivalent to convolution in the
space domain.

« Symmetric Theorem: Multiplication in the
space domain is equivalent to convolution in
the frequency domain.
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Bilinear Filter

« sometimes called a tent filter

» easy to compute
—just linearly interpolate between samples

« finite extent and no negative values
« still has artifacts
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Sampling Pipeline

Original MW

signal

l Low-pass filtering

AN
M/\N
Low-pass

filtered
signal 5 b : o

| _samping 59 |

Tow-pass
filtered Vgl
signal 55 o & o5

| saming

Sampled

signal TR TP

| Reconstructon
&

%
WW A

Fig. 14.20 The sampling pipeline with filtering. (Courtesy of George Wolberg,
Columbia University.)

Reconstructed
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