Interactive Information Visualization

Tamara Munzner

UBC CPSC 414 Week 11, Wed 12 November 2003

Outline

information visualization motivation

designing for humans

information visualization techniques

future directions

Information visualization

interactive visual representation of abstract data help human perform some task more effectively

Interactivity

static images

10,000 years art, graphic design

moving images cinematography

interactive graphics

20 years

computer graphics, human-computer interaction

Information visualization

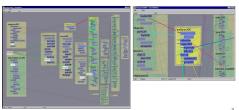
interactive visual representation of abstract data help human perform some task more effectively

external representation

reduces load on working memory

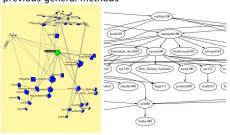
- bridging many fields
 graphics: interacting in realtime
 cognitive psych: finding appropriate representation
 HCI: using task to guide design and evaluation

Visualization Tasks

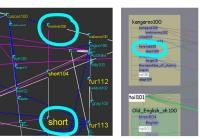

overview zoom filter details-on-demand

relate history

[The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. Ben Shneiderman citeseer.nj.nec.com/shneiderman96eyes.html]

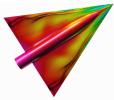

Task-oriented design

custom design for checking semantic networks reading definition subgraph labels


Task-oriented design

previous general methods

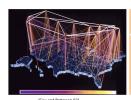
Design tradeoffs


information density vs. visual salience

Scientific vs. information visualization

scivis: inherently spatial data fluid flow over airplane wing

infovis: abstract data, choice of spatialization FilmFinder

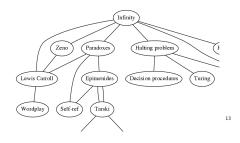


Example: node-link graphs

powerful abstraction

common in many domains

Why visualize graphs?


Example: book topic relationships [Godel, Escher, Bach. Hofstadter 1979]

Paradoxes – Lewis Carroll
Turing – Halting problem
Halting problem – Infinity
Paradoxes – Infinity
Infinity – Lewis Carroll
Infinity – Unpredictably long
searches
Infinity – Recursion
Infinity – Zeno
Infinity – Paradoxes
Lewis Carroll – Zeno
Lewis Carroll – Wordplay

Halting problem – Decision procedures BlooP and FlooP – AI Halting problem – Unpredictably long searches BlooP and FlooP - Unpredictably long searches
BlooP and FlooP – Recursion
Tarski – Truth vs. provability
Tarski – Epimenides
Tarski – Undecidability
Paradoxes – Self-ref 12

Why visualize graphs?

offload cognition to visual systems minimal attention to read answer

Why draw graphs automatically?

automatic: seconds

[Godel, Escher, Bach. Hofstader 79]

dot, [Gansner et al 93]

Outline

information visualization motivation

designing for humans

information visualization techniques

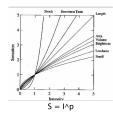
future directions

Human Perception

sensors/transducers psychophysics: determine characteristics

relative judgements: strong absolute judgements: weak

different optimizations than most machines eyes are not cameras perceptual dimensions not nD array (brains are not hard disks)


limits of intuition

thoughts, goals, plans: accurate vision, hearing, attention, memory: inaccurate

15

Nonlinear perception of magnitudes

sensory dimensions not equally discriminable JND: Just Noticeable Differences Stevens power law

Eyes

foveal vision

- high resolution
- thumbnail at arm's length

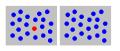
saccades [video]

high-resolution samples, brain makes collage vision perceived as entire simultaneous field dwell 200-600ms, moving: 20-100ms

[vision.arc.nasa.gov/personnel/jbm/home/projects/osa98/osa98.html/

Fovea

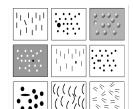
low-res periphery, high-res sensor general concept, not just for eyes foveal touch!: star-nosed mole



[www.nature.com/nsu/010329/010329-6.html brain.nips.ac.jp/event/work131030/Catania_and_Kaas,_1997.pdf]

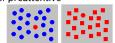
Preattentive visual dimensions

color (hue) alone: preattentive attentional system not invoked search speed independent of distractor count

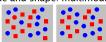


19

Preattentive visual dimensions


many preattentive dimensions of visual modality

- hue shape texture length
- width size
- orientation curvature intersection
- intensity
- flicker
- direction of motion stereoscopic depth
- lighting direction



Preattentive visual dimensions

color alone: preattentive shape alone: preattentive

combined hue and shape: multimodal

- requires attention
- search speed linear with distractor count

20

Well, actually...

sometimes works (motion + color)

but need both preattentive and cognitive for, say, designing visualizations

Integral vs. separable dimensions

red-green yellow-blue

x-size y-size

size orientation

color shape

color motion

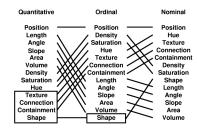
color location

Data types

continuous (quantitative)
10 inches, 17 inches, 23 inches

ordered (ordinal) small, medium, large

categorical (nominal) apples, oranges, bananas



[graphics.stanford.edu/papers/polaris]

25

Dimensional ranking varies by data type

spatial position best for all types

architecture Automation the Davison of Countries Documentations of Relational Information, ACM TOC 5-2, 1986

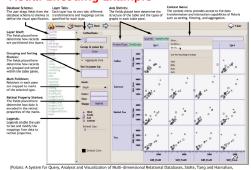
Dimensional ranking

graphics.stanford.edu/courses/cs448b-02-spring/lectures/encoding/walk015.htm

27

31

Dimensional dynamic range


linewidth: limited discriminability

[mappa.mundi.net/maps/maps_014/telegeography.html]

28

Visual Encoding Example

Ears

perceived as temporal stream
but also samples over time
hard to filter out when not important
visual vs auditory attention

implications

harder to create overview? hard to use as separable dimension?

'sonification' still very niche area alternative: supporting sound enhances immersion

30

32

Outline

information visualization motivation

designing for humans

information visualization techniques

future directions

Color rules of thumb

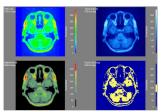
nominal

bad: > 12 hues good: use <= ~12 hues

.

ordinal

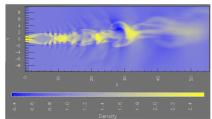
bad: using hue good: saturation/brightness



quantitative

bad: rainbow colormaps good: interpolate between two hues

Colormaps


rainbow colormaps usually bad idea hue is mediocre for showing order not perceptually linear!

ogowitz and Treinish, How NOT to Lie with Visualization, w.research.ibm.com/dx/proceedings/pravda/truevis.htm

Colormaps

interpolating between two hues usually safe

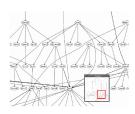
[Rogowitz and Treinish, How NOT to Lie with Visualization, www.research.ibm.com/dx/proceedings/pravda/truevis.htm

Overview+detail

problem

avoid user disorientation when inspecting detail hard for big datasets

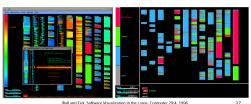
bad: one window, must remember position



33

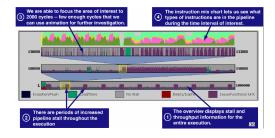
Overview and detail

better: add linked overview window(s)


how to create overview?

Overview and detail

SeeSoft: software maintenance (colormaps: segmented vs. continuous)



Overview+detail

Rivet: performance tuning level of detail

Overview to detail to sorting

Focus+context

linked windows still have cognitive load to correlate good solution: merge overview, detail into single window

fisheye views [Furnas 86], [Sarkar et al 94]

39

Focus+context

linked windows still have cognitive load to correlate good solution:

merge overview, detail into single window

fisheye views [Furnas 86], [Sarkar et al 94] nonlinear magnification [Keahey 96]

41

TableLens

focus+context power of sorting

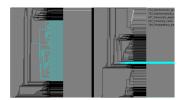
www.tablelens.com

42

Focus+context

H3 [Munzner 97]

task: browsing large quasi-hierarchical graphs [demo]



[Munzner 1997, 1998a, 1998b]

Global focus+context

TreeJuxtaposer: comparing trees

linked highlighting [demo]

44

Comparison

bad: temporal, if many items

intermediate ones "overload mental buffer" good: temporal blinking if two items

good: side by side array of small multiples creates overview

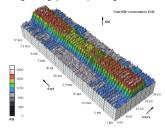
Minimizing occlusion

bad: Midwestern occlusion

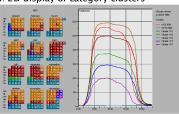
[citeseer.nj.nec.com/becker95visualizing.html] [Becker, Eick, and Wilks. Visualizing Network Data, IEEE TVCG 1995]

46

Minimizing occlusion


good: show only start and end of lines

[citeseer.nj.nec.com/becker95visualizing.html]
[Becker, Eick, and Wilks, Visualizing Network Data, IEEE TVCG 1995


Minimizing occlusion: 3D vs. 2D

bad: 3D pretty but not useful metacognitive gap: lose by adding dimension

Minimizing occlusion: 3D vs. 2D

good: 2D display of category clusters

Motion: clarify structure

navigation

rotate/translate/zoom [demo: Geomview]

object recognition

moving lights at joints Johannson 1973

animated transitions

avoid change blindness jump increases cognitive load smooth transition from one state to next maintain object constancy

Outline

information visualization motivation

designing for humans

information visualization techniques

future directions

51

Future: scaling to huge datasets

data explosion

sensors

Human Genome Project Sloan Digital Sky Survey

simulation

Accelerated Strategic Computing Initiative microprocessor design

long-distance telephony backbone Web traffic

52

Future: scaling display resolution

always pixel-bound in past

high-res displays now available 4K x 2K: 9Mpixels vs 1 Mpixel pixel rich

interactivity + resolution of paper add physical navigation (walk closer) to virtual navigation

More Information

UBC Term 2 course: 533C Visualization undergrads by consent of instructor

http://www.cs.ubc.ca/~tmm