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Surface Graphics

• Objects explicitly defined by a surface or 
boundary representation:
– a mesh of polygons
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Surface Graphics
• Pros

– fast rendering algorithms available
– hardware acceleration cheap (PC game boards!)
– OpenGL API for programming
– use texture mapping for added realism

• Cons
– discards interior of object, maintaining only the shell
– operations such cutting, slicing & dissection not possible
– no artificial viewing modes such as semi-transparencies, 

X-ray
– surface-less phenomena such as clouds, fog & gas are 

hard to model and represent
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Volume Graphics

• Maintains a discrete representation close to 
the underlying 3D object

• Different aspects of the dataset can be 
emphasized via changes in transfer functions
– translate raw densities into colors and transparencies

• When the nature of the data is not known, it is 
difficult to create the right polygonal mesh
– easier to voxelize!
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Volume Graphics

• Pros
– formidable technique for data exploration

volumetric human head (CT scan)

• Cons
– rendering algorithm has high complexity!
– special purpose hardware costly (~$3,000-$10,000)
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Volume Graphics – Examples

Anatomical atlas from visible 
human (CT & MRI) datasets

Industrial CT - structural failure and 
security applications

flow around an airplane wing Shockwave visualization – simulation 
with Navier-Stokes PDEs
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Volume Graphics - Basics
• A volume is 3D array of point samples, called voxels

– the point samples are located at the grid points
– the process of generating a 2D image from the 3D volume 

is called volume rendering
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Volume Rendering Pipeline
raw density data (voxel)
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Classification
• A raw voxel stores only density

• Density may have a different meanings:
– stress, strain, temperature
– absorption
– material tag

• Need for assigning meaningful visual attributes such as colors

• Classification is translation of raw values to color and opacity

• Classification done using RGBα transfer functions!
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Transfer Functions
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Volume Rendering Modes
• For each pixel in the image, a ray is cast 

into the volume:

• Four main volume rendering modes exist:
eye

X-Ray:

Rays sum contributions 
along their path linearly

Maximum Intensity 
Projection:

A pixel stores the largest 
intensity values along its ray

Iso-surface:

Rays composite
contributions only from 
voxels of a certain 
intensity defining a 
surface

Full-volume:

Rays composite
contributions along their 
path linearly
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Ray casting – Orthographic

All rays are parallel

A ray is specified as:

rij = n, the view vector

n = u × v

Image order projection:
- scan the image in row order, 

Pi, j = P0, 0 + j(Ni -1) + i

- Pi, j location of pixel i, j in world space

0<=i<=Ni 0<=j<=Nj

P0, 0  = image origin in world space

A point P on a ray is given by:

P = Pi, j + t × n

t = step size along ray
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Ray casting – Perspective

A ray is specified by:

- eye position (Eye)

- screen pixel location  (Pi, j)

rij = the view vector

= Pi, j – Eye / | Pi, j – Eye |

Image order projection:
- scan the image in row order, 

Pi, j = P0, 0 + j(Ni -1) + i

- Pi, j location of pixel i, j in world space

0<=i<=Ni 0<=j<=Nj

P0, 0  = image origin in world space

A point P on a ray is given by:

P = Eye + t × ri, j

t = step size along ray
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Volume Rendering Integral
• Consider a volume consisting of particles:

– each has color C and light attenuating density µ

• A rendering ray accumulates attenuated colors

• The continuous volume rendering integral:

• Approximate it by discretizing it into sampling intervals of width ∆s:

analytic evaluation of the 
integral not efficient
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Volume Rendering Integral
• A few approximations make the computation more efficient
• Define transparency t(i∆s) as: exp(-µ(i∆s) ∆s) = t(i∆s)

• Opacity α is defined as (1 - transparency):    α(i∆s) = (1 – t(i∆s))

• Approximate the exponential term by a two term Taylor expansion:
t(i∆s) = exp(-µ(i∆s) ∆s) ≈ 1 - µ(i∆s) ∆s

• Then we can write:  µ(i∆s) ∆s ≈ 1 – t(i∆s) = α(i∆s)

• Discretized volume rendering integral:

• This equation is used for stepwise compositing of samples along a ray
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Compositing
• It is the accumulation of colors weighted by opacities

• Colors and opacities of back pixels are attenuated by opacities 

of front pixels:
rgb = RGBback αback (1 – αfront) + RGBfront αfront

α = αback (1 – αfront ) + αfront

• This leads to the front-to-back compositing equation:
c = C(i∆s)α(i∆s)(1 - α) + c
α = α(i∆s)(1 - α) + α

• back-to-front compositing: 
c = c(1 - α(i∆s)) + C(i∆s)
α = α (1 - α(i∆s)) + α(i∆s)

advantage – early ray termination!

advantage – object order approach suitable 
for hardware implementation!
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Volume Rendering Algorithms

• Ray casting 
– image order, forward viewing

• Splatting
– object order, backward viewing

• 2D & 3D texture mapping h/w
– object order
– back-to-front compositing 
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Splatting
• Each voxel represented as a fuzzy ball

(a 3D Gaussian function)

• Each such fuzzy voxel is given an RGBα value
– based on the transfer function

• Fuzzy balls projected onto the screen, leaving a footprint called splat

• Simplified algorithm:
– traverse the voxels in front-to-back order
– project the voxels to the screen and composite the splats

object order algorithm – project 
only interesting voxels hence fast
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Texture Mapping
• 2D: volume as axis aligned 2D textures

– back-to-front compositing
– coherent memory access pattern
– commodity hardware support
– need for calculating texture coordinates

and warping to image plane

• 3D: volume as image aligned 3D textures
– requires more complex hardware
– current generation PC game boards!
– simpler algorithm for generating texture 

coordinates (directly use u, v, w)

• OpenGL support for compositing
glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

Week 11/Nov. 10th 19



Volume Visualization
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