
Volume Visualization

CPSC 414

Abhijeet Ghosh

Week 11/Nov. 10th 1

Surface Graphics

• Objects explicitly defined by a surface or
boundary representation:
– a mesh of polygons

Week 11/Nov. 10th 2

Surface Graphics
• Pros

– fast rendering algorithms available
– hardware acceleration cheap (PC game boards!)
– OpenGL API for programming
– use texture mapping for added realism

• Cons
– discards interior of object, maintaining only the shell
– operations such cutting, slicing & dissection not possible
– no artificial viewing modes such as semi-transparencies,

X-ray
– surface-less phenomena such as clouds, fog & gas are

hard to model and represent

Week 11/Nov. 10th 3

Volume Graphics

• Maintains a discrete representation close to
the underlying 3D object

• Different aspects of the dataset can be
emphasized via changes in transfer functions
– translate raw densities into colors and transparencies

• When the nature of the data is not known, it is
difficult to create the right polygonal mesh
– easier to voxelize!

Week 11/Nov. 10th 4

Volume Graphics

• Pros
– formidable technique for data exploration

volumetric human head (CT scan)

• Cons
– rendering algorithm has high complexity!
– special purpose hardware costly (~$3,000-$10,000)

Week 11/Nov. 10th 5

Volume Graphics – Examples

Anatomical atlas from visible
human (CT & MRI) datasets

Industrial CT - structural failure and
security applications

flow around an airplane wing Shockwave visualization – simulation
with Navier-Stokes PDEs

Week 11/Nov. 10th 6

Volume Graphics - Basics
• A volume is 3D array of point samples, called voxels

– the point samples are located at the grid points
– the process of generating a 2D image from the 3D volume

is called volume rendering

Week 11/Nov. 10th 7

Volume Rendering Pipeline
raw density data (voxel)

Week 11/Nov. 10th 8

classification

interpolation

shading

compositing

interpolation

classification

Classification
• A raw voxel stores only density

• Density may have a different meanings:
– stress, strain, temperature
– absorption
– material tag

• Need for assigning meaningful visual attributes such as colors

• Classification is translation of raw values to color and opacity

• Classification done using RGBα transfer functions!

Week 11/Nov. 10th 9

Transfer Functions
1.0

0.0

0
Voxel density

gel -
transparent

tissue – semi-
transparent

bone – opaque

255

Week 11/Nov. 10th 10

Volume Rendering Modes
• For each pixel in the image, a ray is cast

into the volume:

• Four main volume rendering modes exist:
eye

X-Ray:

Rays sum contributions
along their path linearly

Maximum Intensity
Projection:

A pixel stores the largest
intensity values along its ray

Iso-surface:

Rays composite
contributions only from
voxels of a certain
intensity defining a
surface

Full-volume:

Rays composite
contributions along their
path linearly

Week 11/Nov. 10th 11

Ray casting – Orthographic

All rays are parallel

A ray is specified as:

rij = n, the view vector

n = u × v

Image order projection:
- scan the image in row order,

Pi, j = P0, 0 + j(Ni -1) + i

- Pi, j location of pixel i, j in world space

0<=i<=Ni 0<=j<=Nj

P0, 0 = image origin in world space

A point P on a ray is given by:

P = Pi, j + t × n

t = step size along ray

Week 11/Nov. 10th 12

Ray casting – Perspective

A ray is specified by:

- eye position (Eye)

- screen pixel location (Pi, j)

rij = the view vector

= Pi, j – Eye / | Pi, j – Eye |

Image order projection:
- scan the image in row order,

Pi, j = P0, 0 + j(Ni -1) + i

- Pi, j location of pixel i, j in world space

0<=i<=Ni 0<=j<=Nj

P0, 0 = image origin in world space

A point P on a ray is given by:

P = Eye + t × ri, j

t = step size along ray

Week 11/Nov. 10th 13

Volume Rendering Integral
• Consider a volume consisting of particles:

– each has color C and light attenuating density µ

• A rendering ray accumulates attenuated colors

• The continuous volume rendering integral:

• Approximate it by discretizing it into sampling intervals of width ∆s:

analytic evaluation of the
integral not efficient

Week 11/Nov. 10th 14

Volume Rendering Integral
• A few approximations make the computation more efficient
• Define transparency t(i∆s) as: exp(-µ(i∆s) ∆s) = t(i∆s)

• Opacity α is defined as (1 - transparency): α(i∆s) = (1 – t(i∆s))

• Approximate the exponential term by a two term Taylor expansion:
t(i∆s) = exp(-µ(i∆s) ∆s) ≈ 1 - µ(i∆s) ∆s

• Then we can write: µ(i∆s) ∆s ≈ 1 – t(i∆s) = α(i∆s)

• Discretized volume rendering integral:

• This equation is used for stepwise compositing of samples along a ray

Week 11/Nov. 10th 15

Compositing
• It is the accumulation of colors weighted by opacities

• Colors and opacities of back pixels are attenuated by opacities

of front pixels:
rgb = RGBback αback (1 – αfront) + RGBfront αfront

α = αback (1 – αfront) + αfront

• This leads to the front-to-back compositing equation:
c = C(i∆s)α(i∆s)(1 - α) + c
α = α(i∆s)(1 - α) + α

• back-to-front compositing:
c = c(1 - α(i∆s)) + C(i∆s)
α = α (1 - α(i∆s)) + α(i∆s)

advantage – early ray termination!

advantage – object order approach suitable
for hardware implementation!

Week 11/Nov. 10th 16

Volume Rendering Algorithms

• Ray casting
– image order, forward viewing

• Splatting
– object order, backward viewing

• 2D & 3D texture mapping h/w
– object order
– back-to-front compositing

Week 11/Nov. 10th 17

Splatting
• Each voxel represented as a fuzzy ball

(a 3D Gaussian function)

• Each such fuzzy voxel is given an RGBα value
– based on the transfer function

• Fuzzy balls projected onto the screen, leaving a footprint called splat

• Simplified algorithm:
– traverse the voxels in front-to-back order
– project the voxels to the screen and composite the splats

object order algorithm – project
only interesting voxels hence fast

Week 11/Nov. 10th 18

Texture Mapping
• 2D: volume as axis aligned 2D textures

– back-to-front compositing
– coherent memory access pattern
– commodity hardware support
– need for calculating texture coordinates

and warping to image plane

• 3D: volume as image aligned 3D textures
– requires more complex hardware
– current generation PC game boards!
– simpler algorithm for generating texture

coordinates (directly use u, v, w)

• OpenGL support for compositing
glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

Week 11/Nov. 10th 19

Volume Visualization

• Acknowledgement:

Klaus Mueller
mueller@cs.sunysb.edu
Stony Brook University
New York - 11794, USA

Week 11/Nov. 10th 20

	Volume Visualization
	Surface Graphics
	Surface Graphics
	Volume Graphics
	Volume Graphics
	Volume Graphics – Examples
	Volume Graphics - Basics
	Volume Rendering Pipeline
	Classification
	Transfer Functions
	Volume Rendering Modes
	Ray casting – Orthographic
	Ray casting – Perspective
	Volume Rendering Integral
	Volume Rendering Integral
	Compositing
	Volume Rendering Algorithms
	Splatting
	Texture Mapping
	Volume Visualization

