
University of British Columbia
CPSC 111, Intro to Computation

Jan-Apr 2006

Tamara Munzner

Class Design III

Lecture 8, Tue Jan 31 2006

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr

based on slides by Paul Carter

Reading This Week

■ Chap 3 (today)

■ Re-read Chapter 4.3-4.5 (Thursday)

■ reminder - code examples created in class
posted by slides and assigned reading

News

■ Assignment 1 due today 5pm

■ Wed office hours 11:30-12:30 not 11-12
■ reminder: in X661

■ Windows home setup guide posted to
WebCT

■ Reminders
■ CSLC is available if you need help

■ Check ugrad email account regularly (or
forward to active account)
■ grade info sent there

Exam

■ Midterm reminder: Tue Feb 7, 18:30 - 20:00
■ Geography 100 & 200

■ Exam conflict: email me today

■ DRC: Disability Resource Center
■ academic accomodation for disabilities
■ forms due one week before exam (today!)
■ http://students.ubc.ca/access/drc.cfm

Correction: UML

■ UML diagram representing class design

Classname

fields

methods

+ field: type

- method(): return type

+ Classname()

+ method(): return type

+ method(param1 type,
param2 type): return
type

- field: type

Recap: UML

■ UML diagram for Die class we designed

Die

fields

methods

- sides: int

+ Die()

+ setSides(numSides: int):
void

+ roll(): int

Objectives

■ understand how to design new classes using
abstraction and encapsulation

■ understand how to implement new classes in
Java

■ understand how to comment classes using
javadoc conventions

■ understand how to create documentation
using javadoc

■ understand how to finish refining code

Recap: Separation and Modularity

■ Design possibilities
■ Die and RollDie as separate classes

■ one single class that does it all

■ Separation allows code re-use through modularity
■ another software design principle

■ One module for modeling a die: Die class

■ Other modules can use die or dice
■ we wrote one, the RollDice class

■ Modularization also occurs at file level
■ modules stored in different files

■ also makes re-use easier

Recap: Control Flow Between Modules

■ So far, easy to understand control flow: order
in which statements are executed
■ march down line by line through file

■ Now consider control flow between modules

int rollResult;

myDie.setSides();

rollResult = myDie.roll();

public int roll()
{
 …
}

public void setSides()
{
 …
}

Client code Die class methods

Key Topic Summary

Borrowed phrasing from Steve Wolfman

■ Generalizing from something concrete
■ fancy name: abstraction

■ Hiding the guts from the outside
■ fancy name: encapsulation

■ Keeping one part from stomping on another
■ fancy name: modularity

■ Breaking down a problem
■ fancy name: functional decomposition

Implementing Point and PointTest

public class Point {

}

Commenting Code
■ Conventions

■ explain what classes and methods do

■ plus anywhere that you've done something
nonobvious
■ often better to say why than what

■ not useful
int wishes = 3; // set wishes to 3

■ useful
int wishes = 3; // follow fairy tale convention

javadoc Comments
■ Specific format for method and class header

comments
■ running javadoc program will automatically generate

HTML documentation

■ Rules
■ /** to start, first sentence used for method summary

■ @param tag for parameter name and explanation

■ @return tag for return value explanation

■ other tags: @author, @version

■ */ to end

■ Running
 % javadoc Die.java
 % javadoc *.java

javadoc Method Comment Example

/**
 Sets the die shape, thus the range of values it can roll.
 @param numSides the number of sides of the die
*/
public void setSides(int numSides) {
 sides = numSides;
}

/**
 Gets the number of sides of the die.
 @return the number of sides of the die
*/
public int getSides() {
 return sides;
}

javadoc Class Comment Example

/** Die: simulate rolling a die
 * @author: CPSC 111, Section 206, Spring 05-06
 * @version: Jan 31, 2006
 *
 * This is the final Die code. We started on Jan 24,
 * tested and improved in on Jan 26, and did a final
 * cleanup pass on Jan 31.
 */

Cleanup Pass

■ Would we hand in our code as it stands?
■ good use of whitespace?
■ well commented?

■ every class, method, parameter, return value

■ clear, descriptive variable naming conventions?
■ constants vs. variables or magic numbers?
■ fields initialized?
■ good structure?
■ follows specification?

■ ideal: do as you go
■ commenting first is a great idea!

■ acceptable: clean up before declaring victory

Formal vs. Actual Parameters
■ formal parameter: in declaration of class

■ actual parameter: passed in when method is
called
■ variable names may or may not match

■ if parameter is primitive type
■ call by value: value of actual parameter copied

into formal parameter when method is called

■ changes made to formal parameter inside
method body will not be reflected in actual
parameter value outside of method

■ if parameter is object: covered later

Scope

■ Fields of class are have class scope:
accessible to any class member
■ in Die and Point class implementation, fields

accessed by all class methods
■ Parameters of method and any variables

declared within body of method have local
scope: accessible only to that method
■ not to any other part of your code

■ In general, scope of a variable is block of
code within which it is declared
■ block of code is defined by braces { }

