
University of British Columbia

CPSC 111,  Intro to Computation

Jan-Apr 2006

Tamara Munzner

Class Design

Lecture 6, Tue Jan 24 2006

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr

based on slides by Paul Carter

Reading This Week

! Chap 3

  String firstname = "Alphonse";

  char thirdchar = firstname.charAt(2);

                                             object                     method      parameter

Recap: Methods and Parameters

! Methods are how objects are manipulated

! pass information to methods with parameters
! inputs to method call

! tell charAt method which character in the String object we're

interested in

! methods can have multiple parameters

! API specifies how many, and what type

! two types of parameters

! explicit parameters given between parens

! implicit parameter is object itself

Recap: Return Values

! Methods can have return values

! Example: charAt method result

! return value, the character 'n',  is stored in

thirdchar

  String firstname = "kangaroo";

  char thirdchar = firstname.charAt(2);

! Not all methods have return values

! No return value indicated as void

return value                 object               method    parameter

Recap: Constructors and Parameters

! Many classes have more than one

constructor, taking different parameters

! use API docs to pick which one to use based

on what initial data you have

animal = new String();

animal = new String("kangaroo");

Recap: Keyboard Input

! Want to type on keyboard and have Java program

read in what we type

! store it in variable to use later

! Scanner class does the trick

! java.util.Scanner

! nicer than System.in, the analog of System.out



Recap: Importing Packages

! Collections of related classes grouped into

packages

! tell Java which packages to keep track of with

import statement

! again, check API to find which package

contains desired class

! No need to import String, System.out
because core java.lang packages

automatically imported

import java.util.Scanner;

public class Echo

{

    public static void main (String[] args)

    {

        String message;

        Scanner scan = new Scanner (System.in);

        System.out.println ("Enter a line of text: ");

        message = scan.nextLine();

        System.out.println ("You entered: \"" 

                             + message + "\"");

    }

}

Recap: Scanner Class Example

! Print out the message on the display

Escape Characters

! How can you make a String that has quotes?
! String foo = “oh so cool”;

! String bar = “oh so \”cool\”, more so”;

! Escape character: backslash

! general principle

Objectives

! understand principles of abstraction and

encapsulation

! understand how to design new classes using

these principles

! understand how to implement new classes in

Java

Creating Classes and Objects

! So far you’ve seen how to use classes

created by others

! Now let’s think about how to create our own

! Example: rolling dice

! doesn’t exist already in Java API

! we need to design

! we need to implement

! Start with two design principles

Abstraction

! Abstraction: process whereby we

! hide non-essential details

! provide a view that is relevant

! Often want different layers of abstraction

depending on what is relevant



Encapsulation

! Encapsulation: process whereby
! inner workings made inaccessible to protect

them and maintain their integrity

! operations can be performed by user only
through well-defined interface.

! aka information hiding

! Cell phone example
! inner workings encapsulated in hand set

! cell phone users can’t get at them

! intuitive interface makes using them easy
! without understanding how they actually work

Approach

! Apply principles of abstraction and

encapsulation to classes we design and

implement

! same idea as examples from daily life

! only in software

Designing Die Class

! Blueprint for constructing objects of type Die

! Think of manufacturing airplanes

! build one blueprint

! manufacture many instances from it

! Consider two viewpoints

! client programmer: want to use Die object in

a program

! designer: creator of Die class

Client Programmer

! What operations does client programmer

need?

! what methods should we create for Die?

Designer

! Decide on inner workings

! implementation of class

! Objects need state

! attributes that distinguish one instance from
another

! many names for these

! state variables

! fields

! attributes

! data members

! what fields should we create for Die?

Information Hiding

! Hide fields from client programmer

! maintain their integrity

! allow us flexibility to change them without

affecting code written by client programmer

! Parnas' Law:

! "Only what is hidden can by changed without risk."



Public vs Private

! public keyword indicates that something

can be referenced from outside object

! can be seen/used by client programmer

! private keyword indicates that something

cannot be referenced from outside object

! cannot be seen/used by client programmer

! Let’s fill in public/private for Die class

Public vs. Private Example

Die myDie = new Die();

myDie.                 //not allowed!

Unified Modeling Language

! Unified Modeling Language (UML) provides us with
mechanism for modeling design of software

! critical to separate design from implementation (code)

! benefits of good software design

! easy to understand, easy to maintain, easy to implement

! What if skip design phase and start implementing (coding)?

! code difficult to understand, thus difficult to debug

! We’ll use UML class diagrams represent design of our
classes

! Once the design is completed, could be implemented in
many different programming languages

! Java, C++, Python,...

UML for Die

! UML diagram representing Die class design

Encapsulation Diagram

! Illustrate principle of encapsulation for Die

A Die object

client

programmer

Implementing Die

public class Die

{

}



Implementing RollDice

public class RollDice

{

   public static void main ( String [] args)

   {

}


