University of British Columbia
CPSC 111, Intro to Computation
Jan-Apr 2006

Tamara Munzner

Objects, Methods, Parameters, Input

Lecture 5, Thu Jan 19 2006

based on slides by Kurt Eiselt

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr

Reading This Week

= Rest of Chap 2
m 2.34, 2.6-2.10

= Rest of Chap 4
m4.34.7

Objectives

= Understand when to use parameters
= Understand how to use return values
= Understand how to handle keyboard input

Recap: Constants

= Things that do not vary
= unlike variables
= will never change
= Syntax:
= final typeName variableName;
= final typeName variableName = value;
m Constant names in all upper case
= Java convention, not compiler/syntax requirement

Recap: Avoiding Magic Numbers

= magic numbers: numeric constants directly in
code
m almost always bad idea!
= hard to understand code
= hard to make changes
= typos possible
m use constants instead

Recap: Classes, Methods, Objects

= Class: complex data type

m includes both data and operations

m programmers can define new classes

m many predefined classes in libraries
= Method: operations defined within class

m internal details hidden, you only know result
= Object: instance of class

= entity you can manipulate in your program

Recap: Declare vs. Construct Object

public static void main (Strin args
String firstname;
firstname = new String (“Kermit");

= Variable declaration does not create object
= creates object reference
= Constructor and new operator creates object

somewhere in memory
= constructors can pass initial data to object

= Assignment binds object reference to created object
= assigns address of object location to variable

Recap: Declare vs. Construct Object

String object

firstname

bind variable to
expression on right side
of assignment operator expression on right side

of assignment operator

Recap: Objects vs. Primitives
Frog object

m references String object

Frog
famousFrog

String frogName

boolean isMuppet

Frog
favoriteFrog

int
famousNum

int
favoriteNum

= vs. direct storage

Recap: Objects vs. Primitives
Frog object

m references String object

Frog
famousFrog

String frogName

boolean isMuppet

Frog
favoriteFrog

int
famousNum

int
favoriteNum

= vs. direct storage

Recap: APl Documentation

= Online Java library documentation at
http://java.sun.com/j2se/1.5.0/docs/api/

= textbook alone is only part of the story
m let’s take a look!

= Everything we need to know: critical details
= and often many things far beyond current need

m Classes in libraries are often referred to as
Application Programming Interfaces

m orjust API

Recap: Some Available String Methods

public String toUpperCase () ;
Returns a new string object identical to this object but with

ali the characters converted to upper case.

public int length();
Returns the number of characters in this string object.

public boolean equals(String otherString);
Returns true if this string object is the same as
otherString and false otherwise.

public char charAt(int index);
Returns the character at the given index. Note that the
first character in the string is at index O.

More String Methods

public String replace(char oldChar, char newChar) ;
Returns a new string object where all instances of o1dchar
have been changed into newchar.

public String substring(int beginIndex) ;
Returns new string object starting from beginindex position

public String substring(int beginIndex, int endIndex);
Returns new string object starting from beginindex position
and ending at endIndex position

v up to but not including endindex char:
substring (4, 7) “o K”

[Hler |1 Jo] [kfefr fm]i [t [F]rfo]g]

0123 456 7 8 9101112131415

String Method Example

public class StringTest

{
public static void main (String[] args)
{
String firstname = new String ("Kermit");
String lastname = new String ("theFrog");
firstname = firstname.toUpperCase();
System.out.println("I am not " + firstname
+ " " + lastname);
}
}

= invoking methods
m objectName.methodName();
= remember identifiers can't have . in them

Methods and Parameters

m Class definition says what kinds of data and
methods make up object

m object is specific instance of class

String firstname = "Alphonse";
char thirdchar = firstname.charAt(2);

object

Methods and Parameters

m Class definition says what kinds of data and
methods make up object

m object is specific instance of class
= methods are how objects are manipulated

String firstname = "Alphonse";
char thirdchar = firstname.charAt(2);

object method

Methods and Parameters

= Class definition says what kinds of data and
methods make up object

m object is specific instance of class
= methods are how objects are manipulated

m pass information to methods with parameters
= inputs to method call

= tell charAt method which character in the String object
we're interested in

String firstname = "Alphonse";
char thirdchar = firstname.charAt(2);

object method parameter

Parameters

= Methods can have multiple parameters
= API specifies how many, and what type

public String replace (char oldChar, char newChar) ;

String animal = "mole";
animal.replace('m', 'v');

public String substring(int beginIndex, int endIndex);
animal = "aardwolf";

String newanimal = animal.substring(4,8);
System.out.println (newanimal) ; // wolf

Explicit vs. Implicit Parameters

Explicit parameters given between parentheses
Implicit parameter is object itself

Example: substring method needs

= beginIndex, endIndex

= but also the string itself!

animal = "aardwolf";

System.out.println (animal) ; // aardwolf
String newanimal = animal.substring(4,8);
System.out.println (newanimal) ; // wolf

All methods have single implicit parameters
= can have any number of explicit parameters
= none, one, two, many...

Parameters

= Most of the time we'll just say parameters,
meaning the explicit ones

Return Values

= Methods can have return values
= Example: charAt method result
= return value, the character 'n', is stored in thirdchar

String firstname = "kangaroo";
char thirdchar = firstname.charAt(2);
return value object method parameter

Return Values

= Methods can have return values
= Example: charAt method result
= return value, the character 'n', is stored in thirdchar

String firstname = "kangaroo";
char thirdchar = firstname.charAt(2);
return value object method parameter

= Not all methods have return values
= Example: println method does not return anything

= prints character 'n' on the monitor, but does not return
that value

= printing value and returning it are not the same thing!

System.out.println(thirdchar);

Return Values

= Again, API docs tell you
= how many explicit parameters
m whether method has return value
= what return value is, if so

Method Summary

char|charat (int index)
Returns the char value at the specified index.

m No return value indicated as void

Constructors and Parameters

= Many classes have more than one
constructor, taking different parameters

m use API docs to pick which one to use based
on what initial data you have

Constructor Summary

String()
Initializes a newly created string object so that it represents an empty character
sequence.

String(String original)

Initializes a newly created string object so that it represents the same sequence of
characters as the argument; in other words, the newly created string is a copy of the
argument string.

animal = new String();
animal = new String("kangaroo");

Accessors and Mutators

= Method that only retrieves data is accessor
= read-only access to the value
= example: charAt method of String class

= Method that changes data values internally is
mutator

= Stay tuned for examples of mutators, we haven't
seen any yet

= String class has no mutator methods
m Accessor often called getters
= Mutators often called setters

= names often begin with get and set, as in
getWhatever and setWhatever

Keyboard Input

= Want to type on keyboard and have Java program
read in what we type

= store it in variable to use later
= Want class to do this
= build our own?
= find existing standard Java class library?
= find existing library distributed by somebody else?

m Scanner class does the trick
= java.util.Scanner

= nicer than system.in, the analog of System.out

Scanner Class Example

import java.util.Scanner;

public class Echo
{
public static void main (String[] args)
{
String message;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter a line of text: ");
message = scan.nextLine();
System.out.println ("You entered: \""
+ message + "\"");

Scanner Class Example

import java.utilAScanner;l

public class Echo
{
public static void main (String[] args)
{
String message;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter a line of text: ");
message = scan.nextLine();
System.out.println ("You entered: \""
+ message + "\"");

}

B Import Scanner class from java.util package

Importing Packages

= Collections of related classes grouped into
packages
m tell Java which packages to keep track of with
import statement
m again, check API to find which package
contains desired class
= No need to import String, System.out
because core java.lang packages
automatically imported

Scanner Class Example

import java.util.Scanner;

public class Echo
{
public static void main (String[] args)

{
Scanner scan = new Scanner (System.in);
System.out.println ("Enter a line of text: ");
message = scan.nextLine();
System.out.println ("You entered: \""
+ message + "\"");

}

m Declare string variable to store what user types in

Scanner Class Example

import java.util.Scanner;

public class Echo
{
public static void main (String[] args)
{
String message;
Scanner scan = new Scanner (System.in);
l'§?EEEET3EET5EIEETE'T"EEEEE'E'IIEE'ST'EEEL: ")
message = scan.nextLine();
System.out.println ("You entered: \""
+ message + "\"");

}

m Use Scanner constructor method to create new
Scanner object named scan

= could be named anything, like keyboardstuff or foo

Scanner Class Example

import java.util.Scanner;

public class Echo
{
public static void main (String[] args)
{
String message;
Scanner scan = new_ Scanner (System.in);

System.out.println ("Enter a line of text:

message = scan.nextLine();
System.out.println ("You entered: \""
+ message + "\"");

}

= Prompt user for input

Scanner Class Example

import java.util.Scanner;

public class Echo
{
public static void main (String[] args)
{
String message;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter a line of text: ");
| message = scan.nextLine();
System.out.println ("You entered: \""
+ message + "\"");

}

= nextLine method reads all input until end of line
= returns it as one long string of characters

Scanner Class Example

import java.util.Scanner;

public class Echo
{
public static void main (String[] args)
{
String message;
Scanner scan = new Scanner (System.in);

System.out.println ("Enter a line of text:

n_. nextLin
System.out.println ("You entered: \""
+ message + "\"");

}

= Print out the message on the display

")

Scanner Class Example

m Let’s try running it

Questions?

