
University of British Columbia
CPSC 111, Intro to Computation

Jan-Apr 2006

Tamara Munzner

Constants, Objects, Strings

Lecture 4, Tue Jan 17 2006

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr

based on slides by Kurt Eiselt

Reading This Week

 Rest of Chap 2
 2.3-4, 2.6-2.10

 Rest of Chap 4
 4.3-4.7

Objectives

 Understand when to use constants

 Understand difference between classes and
objects

 Understand difference between objects and
primitive data types

Recap: Data Type Sizes

 fixed size, so finite capacity

approx 1.7E308
 (15 sig. digits)

approx -1.7E308
(15 sig. digits)

8 bytesdouble

2,147,483,647-2,147,483,6484 bytesint

MaxMinSizeType

5802
5803
5804
5805
5806
5807

1011010110110101
10000101

11110001
00010100

Address Data

one integer

Recap: Declaration and Assignment

 Variable declaration is instruction to compiler
 reserve block of main memory large enough to store

data type specified in declaration

 Variable name is specified by identifier
 Syntax:

 typeName variableName;
 typeName variableName = value;

 can declare and assign in one step

 Java first computes value on right side
 Then assigns value to variable given on left side
 x = 4 + 7; // what’s in x?

Recap: Assignment Statements

 Here’s an occasional point of confusion:

 Draw and fill in boxes for your variables at
each time step if you’re confused

 a = 7; // what’s in a?
 b = a; // what’s in b?
 // what’s in a now???
 System.out.println(“a is “ + a + “b is “ +b);
 a = 8;
 System.out.println(“a is “ + a + “b is “ +b);

Recap: Expressions

 expression is combination of
 one or more operators and operands

 operator examples: +, *, /, ...

 operand examples: numbers, variables, ...

 precedence: multiply/divide higher than
add/subtract

Recap: Converting Between Types

 Doubles can simply be assigned ints
 double socks = 1;
 ints are subset of doubles

 Casting: convert from one type to another with
information loss

 Converting from real to integer
 int shoes = (int) 1.5;

 Truncation: fractional part thrown away
 int shoes = (int) 1.75;

 Rounding: must be done explicitly
 shoes = Math.round(1.99);

Recap: Primitive Data Types: Numbers

 Primary primitives are int and double
 three other integer types

 one other real type

approx 1.7E308
 (15 sig. digits)

approx -1.7E308
(15 sig. digits)

8 bytesdouble

approx 3.4E38 (7 sig.digits)approx -3.4E38 (7 sig.digits)4 bytesfloat

9,223,372,036,854,775,807-9,223,372,036,854,775,8088 byteslong

2,147,483,647-2,147,483,6484 bytesint

32,767-32,7682 bytesshort

127-1281 bytebyte

MaxMinSizeType

Recap: Primitive Data Types: Non-
numeric

 Character type
 named char

 Java uses the Unicode character set so each char
occupies 2 bytes of memory.

 Boolean type
 named boolean

 variables of type boolean have only two valid values
 true and false

 often represents whether particular condition is true

 more generally represents any data that has two
states

 yes/no, on/off

What Changes, What Doesn’t?
//***
// Vroom.java Author: Tamara
// Playing with constants
//***
public class Vroom
{
 public static void main (String[] args)
 {
 double lightYears, milesAway;
 lightYears = 4.35; // to Alpha Centauri
 milesAway = lightYears * 186000 *60*60*24*365;
 System.out.println("lightYears: " + lightYears + "
milesAway " + milesAway);
 lightYears = 68; // to Aldebaran
 milesAway = lightYears * 186000 *60*60*24*365;
 System.out.println("lightYears: " + lightYears + "
milesAway " + milesAway);
 }
}

Constants

 Things that do not vary
 unlike variables

 will never change

 Syntax:
 final typeName variableName;

 final typeName variableName = value;

 Constant names in all upper case
 Java convention, not compiler/syntax

requirement

Programming With Constants
public static void main (String[] args)
 {
 double lightYears, milesAway;

 final int LIGHTSPEED = 186000;
 final int SECONDS_PER_YEAR = 60*60*24*365;

 lightYears = 4.35; // to Alpha Centauri
 milesAway = lightYears * LIGHTSPEED * SECONDS_PER_YEAR;
 System.out.println("lightYears: " + lightYears + "
miles " + milesAway);

 lightYears = 68; // to Aldebaran
 milesAway = lightYears * LIGHTSPEED * SECONDS_PER_YEAR;
 System.out.println("lightYears: " + lightYears + "
miles " + milesAway);
 }

Avoiding Magic Numbers

 magic numbers: numeric constants directly in
code
 almost always bad idea!

 hard to understand code

 hard to make changes

 typos possible

 use constants instead

Programming With Constants
public static void main (String[] args)
 {
 double lightYears, milesAway;
 final int LIGHTSPEED = 186000;
 final int SECONDS_PER_YEAR = 60*60*24*365;

 final double ALPHACENT_DIST = 4.35; // to AlphaCentauri
 final double ALDEBARAN_DIST = 68; // to Aldebaran

 lightYears = ALPHACENT_DIST;
 milesAway = lightYears * LIGHTSPEED * SECONDS_PER_YEAR;
 System.out.println("lightYears: " + lightYears + "
miles " + milesAway);
 lightYears = ALDEBARAN_DIST;

 milesAway = lightYears * LIGHTSPEED * SECONDS_PER_YEAR;
 System.out.println("lightYears: " + lightYears + "
miles " + milesAway);
 }

Programming

 Programming is all about specifiying
 data that is to be manipulated or acted upon

 operations that can act upon data

 order in which operations are applied to data

 So far: specify data using primitive data types
 come with pre-defined operations like

+, -, *, and /

Programming with Classes

 What if data we want to work with is more
complex these few primitive data types?

Programming with Classes

 What if data we want to work with is more
complex these few primitive data types?

 We can make our own data type: create a
class
 specifies nature of data we want to work with

 operations that can be performed on that kind
of data

 Operations defined within a class called
methods

Programming with Classes

 Can have multiple variables of primitive types (int,
double)
 each has different name
 each can have a different value

int x = 5;
int y = 17;

 Similar for classes: can have multiple instances of
class String
 each has different name
 each can have different value

String name = “Tamara Munzner”;
String computerName = “pangolin”;

Programming with Objects

 Object: specific instance of a class

 Classes are templates for objects

 programmers define classes

 objects created from classes

Object Example

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;
 firstname = new String (“Kermit");
 lastname = new String (“theFrog");
 System.out.println("I am not " + firstname
 + " " + lastname);
 }
}

Object Example

 Declare two different String objects
 one called firstname and one called lastname

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;
 firstname = new String ("Kermit");
 lastname = new String (“theFrog");
 System.out.println("I am not " + firstname
 + " " + lastname);
 }
}

Object Example

 Variable declaration does not create objects!

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;

Object Example

 Variable declaration does not create objects!
 just tells compiler to set aside spaces in memory with

these names

 Spaces will not actually hold the whole objects
 will hold references: pointers to or addresses of

objects
 objects themselves will be somewhere else in

memory

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;

Object Example

 So firstname and lastname will not contain
String objects
 contain references to String objects

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;
 firstname = new String ("Kermit");
 lastname = new String (“theFrog");
 System.out.println("I am not " + firstname
 + " " + lastname);
 }
}

Constructors

 Constructor: method with same name as
class
 always used with new

 actually creates object

 typically initializes with data

 firstname = new String (“Kermit");

Object Example

 Now create new instance of the String class
 String object with data “Kermit”

 Puts object somewhere in memory
 puts address of the object’s location in firstname:
 firstname holds reference to String object with data “Kermit”

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;
 firstname = new String (“Kermit");
 lastname = new String (“theFrog");
 System.out.println("I am not " + firstname
 + " " + lastname);
 }
}

Object Example

 New operator and String constructor method
instantiate (create) new instance of String
class (a new String object)

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;
 firstname = new String (“Kermit");
 lastname = new String (“theFrog");
 System.out.println("I am not " + firstname
 + " " + lastname);
 }
}

Object Example

firstname

Object Example

firstname String object

“Kermit”

expression on right side
of assignment operator

Object Example

firstname String object

“Kermit”

bind variable to
expression on right side
of assignment operator

Object Example

 And so on

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;
 firstname = new String (“Kermit");
 lastname = new String (“theFrog");
 System.out.println("I am not " + firstname
 + " " + lastname);
 }
}

Object Example

 Can consolidate declaration, assignment
 just like with primitive data types

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname = new String (“Kermit");
 String lastname = new String (“theFrog");

 System.out.println("I am not " + firstname
 + " " + lastname);
 }
}

Objects vs. Primitives

 references

int
favoriteNum

Frog object

Frog
favoriteFrog

42

int
famousNum

42

Frog
famousFrog

vs. direct storage

boolean isMuppet

true

String frogName

String object

“Kermit”

Objects vs. Primitives

 references

int
favoriteNum

Frog object

Frog
favoriteFrog

999

int
famousNum

42

Frog
famousFrog

vs. direct storage

boolean isMuppet

false

String frogName

String object

“Kermit”

Class Libraries

 Before making new class yourself, check to
see if someone else did it already
 libraries written by other programmers

 many built into Java

 Example
 Java has single-character primitive data type

 what if want to work with sequence of
characters

 String class already exists

API Documentation

 Online Java library documentation at
http://java.sun.com/j2se/1.5.0/docs/api/
 textbook alone is only part of the story
 let’s take a look!

 Everything we need to know: critical details
 and often many things far beyond current need

 Classes in libraries are often referred to as
Application Programming Interfaces
 or just API

Some Available String Methods

public String toUpperCase();
Returns a new String object identical to this object but with
all the characters converted to upper case.

public int length();
Returns the number of characters in this String object.

public boolean equals(String otherString);
Returns true if this String object is the same as
otherString and false otherwise.

public char charAt(int index);
Returns the character at the given index. Note that the
first character in the string is at index 0.

More String Methods

public String replace(char oldChar, char newChar);
Returns a new String object where all instances of oldChar

have been changed into newChar.

public String substring(int beginIndex);
Returns new String object starting from beginIndex position

public String substring(int beginIndex, int endIndex);
Returns new String object starting from beginIndex position

and ending at endIndex position

H e l l o K e r m i t F r o g

0 1 2 3 4 5 6 7 8 9 1110 12 13 14 15

substring(4, 7) “o K”

up to but not including endIndex char:

Questions?

