
University of British Columbia
CPSC 111, Intro to Computation

Jan-Apr 2006

Tamara Munzner

Data Types, Assignment, Expressions,
Constants

Lecture 3, Thu Jan 12 2006

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr

based on slides by Kurt Eiselt

News

 Weekly Question 1 due today

 Labs and tutorials started this week
 Labs on Friday cancelled

 you’ve been reassigned elsewhere

 if you missed assigned lab this week, attend
another session if possible

Reminder: Reading This Week

 Ch 1.1 - 1.2: Computer Anatomy
 from last time

 Ch 1.3 – 1.8: Programming Languages

 Ch 2.1-2.2, 2.5: Types/Variables, Assignment,
Numbers

 Ch 4.1-4.2: Numbers, Constants

Reading for Next Week

 Rest of Chap 2
 2.3-4, 2.6-2.10

 Rest of Chap 4
 4.3-4.7

Objectives

 Understand how to declare and assign variables

 Understand when and how to use which data type

 Understand how to convert between data types

 Understand how to interpret expressions

 Understand when to use constants

Recap: Assembly and Machine
Languages

 Hard to read, write, remember

 Many instructions required to do things

 Different languages for each computer type

00000000001000100011000000100000
add what’s to what’s and put it unimportant details for us
 in this in this in this
 register register register

assembler
assembly language machine language

add r1,r2,r6

Recap: High-Level Languages

 Program written in high-level language converted to
machine language instructions by another program
called a compiler (well, not always)

 High-level instruction: A = B + C
becomes at least four machine language
instructions!
00010000001000000000000000000010 load B
00010000010000000000000000000011 load C
00000000001000100011000000100000 add them
00010100110000000000000000000001 store in A

compiler
high-level language machine language

Recap: Sample Java Program

 Comments, whitespace ignored by compiler

//***
// Oreo.java Author: Kurt Eiselt
//
// Demonstrating simple Java programming concepts while
// revealing one of Kurt's many weaknesses
//***

public class Oreo
{
 //***
 // demand Oreos
 //***
 public static void main (String[] args)
 {
 System.out.println ("Feed me more Oreos!");
 }
}

Recap: Identifiers

 Identifiers: start with letter [a-Z,$,_], then
letters of digits [0-9]
 and not be reserved words

 case matters

 meaningful and descriptive, yet concise

Recap: Errors

 Compile-time errors
 syntax/structure

 Run-time errors

 Logical errors
 semantics/meaning

compile-time error

editing translating executing
insight source object results

 code code

run-time error

logical error

Recap: Variables

 Variable: name for location in memory where
data is stored
 avoid having to remember numeric addresses
 like variables in algebra class

 Variable names begin with lower case letters
 Java convention, not compiler/syntax

requirement

Recap: Data Types

 Java requires that we tell it what kind of data it is
working with

 For every variable, we have to declare a data type
 Java language provides eight primitive data types

 i.e. simple, fundamental

 For more complicated things, can use data types
 created by others provided to us through the Java

libraries
 that we invent

 More soon - for now, let’s stay with the primitives

 We want a, b, and c to be integers
 Here’s how we do it...

Recap: Variables and Data Types

//***
// Test3.java Author: Kurt
//
// Our third use of variables!
//***

public class Test3
{
 public static void main (String[] args)
 {
 int a; //these
 int b; //are
 int c; //variable declarations
 b = 3;
 c = 5;
 a = b + c;
 System.out.println ("The answer is " + a);
 }
}

Variable Declaration and Assignment

 variable declaration is instruction to compiler
 reserve block of main memory large enough

to store data type specified in declaration

 variable name is specified by identifier

 syntax:
 typeName variableName;

Data Types: Int and Double

 int
 integer

 double
 real number

 (double-precision floating point)

Floating Point Numbers

 significant digits
 42

 4.2

 42000000

 .000042

Floating Point Numbers

 significant digits
 42 = 4.2 * 10 = 4.2 * 101

 4.2 = 4.2 * 1 = 4.2 * 100

 42000000 = 4.2 * 10000000 = 4.2 * 107

 .000042 = 4.2 * .00001 = 4.2 * 10-5

Floating Point Numbers

 significant digits
 42 = 4.2 * 10 = 4.2 * 101

 4.2 = 4.2 * 1 = 4.2 * 100

 42000000 = 4.2 * 10000000 = 4.2 * 107

 .000042 = 4.2 * .00001 = 4.2 * 10-5

 only need to remember
 nonzero digits

 where to put the decimal point
 floats around when multiply/divide by 10

Data Type Sizes

 fixed size, so finite capacity

approx 1.7E308
 (15 sig. digits)

approx -1.7E308
(15 sig. digits)

8 bytesdouble

2,147,483,647-2,147,483,6484 bytesint

MaxMinSizeType

5802
5803
5804
5805
5806
5807

1011010110110101
10000101

11110001
00010100

Address Data

one integer

Variable Declaration Examples

 person’s age in years

 height of mountain to nearest meter

 length of bacterium in centimeters

 number of pets at home

Assignment

//***
// Test3.java Author: Kurt
//
// Our third use of variables!
//***

public class Test3
{
 public static void main (String[] args)
 {
 int a;
 int b;
 int c;
 b = 3; // these
 c = 5; // are
 a = b + c; // assignment statements
 System.out.println ("The answer is " + a);
 }
}

Assignment Statements

 Assignment statement assigns value to variable
 sometimes say binds value to variable

 Assignment statement is
 identifier
 followed by assignment operator (=)
 followed by expression
 followed by semicolon (;)

 Note that = is no longer a test for equality!

 b = 3;
 c = 8;
 a = b + c;
 weekly_pay = pay_rate * hours_worked;

Assignment Statements

 Java first computes value on right side

 Then assigns value to variable given on left side

 x = 4 + 7; // what’s in x?

 Old value will be overwritten if variable was
assigned before

 x = 2 + 1; // what’s in x now?

Assignment Statements

 Here’s an occasional point of confusion:

 a = 7; // what’s in a?
 b = a; // what’s in b?
 // what’s in a now???

Assignment Statements

 Here’s an occasional point of confusion:

 Find out! Experiments are easy to do in CS

 a = 7; // what’s in a?
 b = a; // what’s in b?
 // what’s in a now???
System.out.println(“a is “ + a + “b is “ +b);

Assignment Statements

 Here’s an occasional point of confusion:

 Variable values on left of = are clobbered
 Variable values on right of = are unchanged

 copy of value assigned to a also assigned to b
 but that doesn’t change value assigned to a

 a = 7; // what’s in a?
 b = a; // what’s in b?
 // what’s in a now???
System.out.println(“a is “ + a + “b is “ +b);

Assignment Statements

 Here’s an occasional point of confusion:

 Memory locations a and b are distinct
 copy of value assigned to a also assigned to b

 changing a later does not affect previous copy
 more later

 a = 7; // what’s in a?
 b = a; // what’s in b?
 // what’s in a now???
 System.out.println(“a is “ + a + “b is “ +b);
 a = 8;
 System.out.println(“a is “ + a + “b is “ +b);

Variable Declaration and Assignment

 variable declaration is instruction to compiler
 reserve block of main memory large enough

to store data type specified in declaration

 variable name is specified by identifier

 syntax:
 typeName variableName;

 typeName variableName = value;
 can declare and assign in one step

Expressions

 expression is combination of
 one or more operators and operands

 operator examples: +, *, /, ...

 operand examples: numbers, variables, ...

 usually performs a calculation
 don’t have to be arithmetic but often are

 examples
 3
 7 + 2
 7 + 2 * 5
 (7 + 2) * 5

Operator Precedence

 What does this expression evaluate to?

 7 + 2 * 5

Operator Precedence

 What does this expression evaluate to?

 7 + 2 * 5

 Multiplication has higher operator precedence than
addition (just like in algebra)

precedence operator operation

1 higher + - unary plus and minus
2 * / % multiply, divide, remainder
3 lower + - add, subtract

Operator Precedence

 What does this expression evaluate to?

 7 + 2 * 5

 Multiplication has higher operator precedence than
addition (just like in algebra)

 Use parentheses to change precedence order or just
clarify intent

 (7 + 2) * 5 7 + (2 * 5)

precedence operator operation

1 higher + - unary plus and minus
2 * / % multiply, divide, remainder
3 lower + - add, subtract

Converting Between Types

 Which of these are legal?
 int shoes = 2;
 double socks = 1.75;
 double socks = 1;
 int shoes = 1.5;

Converting Between Types

 Which of these are legal?
 int shoes = 2;
 double socks = 1.75;
 double socks = 1;
 int shoes = 1.5;

 Integers are subset of reals
 but reals are not subset of integers

Casting

 Casting: convert from one type to another
with information loss

 Converting from real to integer
 int shoes = (int) 1.5;

 Truncation: fractional part thrown away
 int shoes = (int) 1.75;
 int shoes = (int) 1.25;

 Rounding: must be done explicitly
 shoes = Math.round(1.99);

Converting Between Types

 What’s wrong?

//***
// Feet.java Author: Tamara
// What type of things can be put on feet?
//***
public class Feet
{
 public static void main (String[] args)
 {
 int shoes = 2;
 int socks = (int) 1.75;
 System.out.println("shoes = " + shoes + " socks = " +
socks);
 int toes = Math.round(1.99);
 System.out.println("toes = " + toes);
 }
}

Data Type Sizes

 doubles can store twice as much as ints

approx 1.7E308
 (15 sig. digits)

approx -1.7E308
(15 sig. digits)

8 bytesdouble

2,147,483,647-2,147,483,6484 bytesint

MaxMinSizeType

Primitive Data Types: Numbers

 Primary primitives are int and double
 three other integer types

 one other real type

approx 1.7E308
 (15 sig. digits)

approx -1.7E308
(15 sig. digits)

8 bytesdouble

approx 3.4E38 (7 sig.digits)approx -3.4E38 (7 sig.digits)4 bytesfloat

9,223,372,036,854,775,807-9,223,372,036,854,775,8088 byteslong

2,147,483,647-2,147,483,6484 bytesint

32,767-32,7682 bytesshort

127-1281 bytebyte

MaxMinSizeType

Converting Between Types
//***
// Feet2.java Author: Tamara
// What type of things can be put on feet?
//***
public class Feet2
{
 public static void main (String[] args)
 {
 int shoes = 2;
 int socks = (int) 1.75;
 System.out.println("shoes = " + shoes + " socks = " +
socks);
 long toes = Math.round(1.99);
 System.out.println("toes = " + toes);
 }
}

Primitive Data Types: Non-numeric

 Character type
 named char

 Java uses the Unicode character set so each char
occupies 2 bytes of memory.

 Boolean type
 named boolean

 variables of type boolean have only two valid values
 true and false

 often represents whether particular condition is true

 more generally represents any data that has two
states

 yes/no, on/off

What Changes, What Doesn’t?
//***
// Vroom.java Author: Tamara
// Playing with constants
//***
public class Vroom
{
 public static void main (String[] args)
 {
 double lightYears, milesAway;
 lightYears = 4.35; // to Alpha Centauri
 milesAway = lightYears * 186000 *60*60*24*365;
 System.out.println("lightYears: " + lightYears + "
milesAway " + milesAway);
 lightYears = 68; // to Aldebaran
 milesAway = lightYears * 186000 *60*60*24*365;
 System.out.println("lightYears: " + lightYears + "
milesAway " + milesAway);
 }
}

Constants

 Things that do not vary
 unlike variables

 will never change

 Syntax:
 final typeName variableName;

 final typeName variableName = value;

 Constant names in all upper case
 Java convention, not compiler/syntax

requirement

Programming With Constants
public static void main (String[] args)
 {
 double lightYears, milesAway;

 final int LIGHTSPEED = 186000;
 final int SECONDS_PER_YEAR = 60*60*24*365;

 lightYears = 4.35; // to Alpha Centauri
 milesAway = lightYears * LIGHTSPEED * SECONDS_PER_YEAR;
 System.out.println("lightYears: " + lightYears + "
miles " + milesAway);

 lightYears = 68; // to Aldebaran
 milesAway = lightYears * LIGHTSPEED * SECONDS_PER_YEAR;
 System.out.println("lightYears: " + lightYears + "
miles " + milesAway);
 }

Programming With Constants
public static void main (String[] args)
 {
 double lightYears, milesAway;
 final int LIGHTSPEED = 186000;
 final int SECONDS_PER_YEAR = 60*60*24*365;

 final double ALPHACENT_DIST = 4.35; // to AlphaCentauri
 final double ALDEBARAN_DIST = 68; // to Aldebaran

 lightYears = ALPHACENT_DIST;
 milesAway = lightYears * LIGHTSPEED * SECONDS_PER_YEAR;
 System.out.println("lightYears: " + lightYears + "
miles " + milesAway);
 lightYears = ALDEBARAN_DIST;

 milesAway = lightYears * LIGHTSPEED * SECONDS_PER_YEAR;
 System.out.println("lightYears: " + lightYears + "
miles " + milesAway);
 }

Avoiding Magic Numbers

 magic numbers: numeric constants directly in
code
 almost always bad idea!

 hard to understand code

 hard to make changes

 typos possible

 use constants instead

Questions?

