
1

University of British Columbia
CPSC 111, Intro to Computation

Jan-Apr 2006

Tamara Munzner

Graphical User Interfaces

Lecture 25, Thu Apr 6 2006

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr

based on slides by Kurt Eiselt

2

News

■ Midterm solutions going out at end of week

■ Assignment 3 due Friday Apr 7, 5pm

■ CSLC will have special exam period hours

■ Watch for review session announcement

■ Final exam: Mon Apr 24, 3:30pm, HEBB TH

3

Weekly Questions

■ Last one due today

■ Grading: full credit if did 7 or more

■ Check next week for grade in WebCT

4

Reading

■ This week:
■ Chapter 5.1, 5.2, 11.5, 12.1, 12.2, 12.3

5

Exam

■ Practice exam available under Challenge link
from course page
http://www.ugrad.cs.ubc.ca/~cs111/

6

What You Should Know

Chapter 1, 2, 3, 4,
Chapter 5.1, 5.2
Chapter 6, 7
Chapter 8 (but skip 8.2, 8.3, and 8.4)
Chapter 9.3, 9.6, 9.7, 9.8
Chapter 11.1, 11.2, 11.3, 11.5
Chapter 12.1, 12.2, 12.3
Chapter 13 (except for 13.8.3)

plus UML diagrams as you've seen in labs/tutorials
go back in the powerpoint slides and review sorting

7

How to prepare

Read everything that we told you to read on the
previous slide

Review lecture notes and code written in class
(available from web)

Practice, practice, practice -- write programs
(especially using inheritance and abstract classes)

If you're not getting it and want to try a different
approach, run to the bookstore (or head to
Amazon.ca or Indigo.ca) and get a copy of...

8

How to prepare

Head First Java by Kathy Sierra and Bert Bates

Read this book, work all the
problems (there are zillions),
and you should have a
better grasp of what's going
on with Java. (I have no
financial interest in this book
or any bookseller.)

9

A Problem

The Coca-Cola Company has founded Vending University. VU has two
kinds of students. The full time students pay $250.00 per credit in tuition
up to a maximum of $3000.00 (12 credits), even if they enroll in more than
12 credits. Tuition for students in the executive program is computed
differently; these students pay a $3000.00 "executive fee" plus $400.00 per
credit, with no ceiling or cap on the total. Each student has a name and is
enrolled for some integer number of credits.

Write an abstract superclass called Student, and write concrete subclasses
called FullTimeStudent and ExecutiveStudent. The method for computing
the tuition should be called computeTuition().

Now do it again, but with an interface called Student instead of an abstract
superclass.

Provide a test program that uses polymorphism to test your classes and
methods.

10

Programming Practice

■ Two kinds of practice, both are important!

■ Using computer, open book, Internet,
discussing approach with friends, take as long
as you need to fully understand

■ Closed book, write on paper, don't talk to
anybody about the question, time pressure

11

Objectives

■ Taste of what's under the hood with graphical
programming
■ note: taste, not mastery!

12

Recap: Making a frame window

Step 1: Construct an object of the JFrame class.

Step 2: Set the size of the frame.

Step 3: Set the title of the frame to appear in the title
 bar (title bar will be blank if no title is set).

Step 4: Set the default close operation. When the
 user clicks the close button, the program
 stops running.

Step 5: Make the frame visible.

13

Recap: Drawing boxes

Step 1: Define RectangleComponent extending
 JComponent

Step 2: Override paintComponent() method.

 Step 2.1: Create Rectangle object
 Step 2.2: Draw Rectangle using Graphics2D object
 Step 2.3: Move Rectangle, Draw Rectangle, …

Step 3: In driver, construct RectangleComponent,
 add to JFrame

14

Recap: RectangleComponent code
import java.awt.Graphics; // AWT is the Abstract Windowing Toolkit,
import java.awt.Graphics2D; // an older graphical user interface
import java.awt.Rectangle; // toolkit
import javax.swing.JPanel;
import javax.swing.JComponent;

public class RectangleComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 Graphics2D g2 = (Graphics2D) g;

 Rectangle box = new Rectangle(5, 10, 50, 75);
 g2.draw(box);

 box.translate(80,100);

 g2.draw(box);
 }
}

15

Recap: FrameViewer code
import javax.swing.JFrame;

public class FrameViewer
{
 public static void main(String[] args)
 {
 JFrame myframe = new JFrame(); // make a new JFrame object

 final int F_WIDTH = 300; // 300 pixels wide
 final int F_HEIGHT = 400; // 400 pixels high

 myframe.setSize(F_WIDTH, F_HEIGHT);
 myframe.setTitle("My Frame"); // this is optional
 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 RectangleComponent component = new RectangleComponent();
 myframe.add(component);

 myframe.setVisible(true);
 }
}

16

Recap: Here's what we drew
> java FrameViewer

17

Graphical user interfaces (GUIs)
The graphical user interface allows us to interact with our
programs through mouse movements, button clicks, key
presses, and so on.

Your Windows or Macintosh operating system provides you
with a GUI so you don't have to remember all sorts of
instructions to type at the command line.

18

Graphical user interfaces (GUIs)
The graphical user interface allows us to interact with our
programs through mouse movements, button clicks, key
presses, and so on.

Your Windows or Macintosh operating system provides you
with a GUI so you don't have to remember all sorts of
instructions to type at the command line.

Here's a GUI you've seen me
use many times.

19

Event handling
How do we make a GUI in Java? We install event listeners.

An event listener is an object that belongs to a class which
you define. The methods in your event listener contain the
instructions to be executed when the events occur.

Any event listener is specific to an event source. For
example, you'd have one kind of event listener to respond to
the click of a button on your mouse, and another to respond
to the press of a key on your keyboard.

When an event occurs, the event source calls the
appropriate methods of all associated event listeners.

20

Event handling
Here comes an example, straight from your book. This
example is a simple program that prints a message when a
button is clicked.

An event listener that responds to button clicks must belong
to a class that implements the ActionListener interface. That
interface, supplied by the Abstract Windowing Toolkit (AWT),
looks like this:

public interface ActionListener
{
 void actionPerformed(ActionEvent event);
}

Java uses the event parameter to pass details about the
event. We don't need to worry about it.

21

Event handling
Here's what our example class that implements the
ActionListener interface looks like:

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

public class ClickListener implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 System.out.println("I was clicked.");
 }
}

The actionPerformed() method contains the instructions we
want to be executed when our button is clicked.

22

Event handling
Next we'll see a program that tests our ClickListener class.
It looks very much like the program we wrote earlier.

First we create a frame window object so we have a place to
put the button that we want to click.

23

Event handling
import javax.swing.JFrame;
import javax.swing.JButton;
import java.awt.event.ActionListener;

public class ButtonTester
{
 public static void main(String[] args)
 {
 JFrame myframe = new JFrame();
 final int F_WIDTH = 100;
 final int F_HEIGHT = 60;
 myframe.setSize(F_WIDTH, F_HEIGHT);
 myframe.setTitle("Button Tester");
 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 myframe.setVisible(true);
 }
}

24

Event handling
Next we'll see a program that tests our ClickListener class. It
looks very much like the program we wrote earlier.

First we create a frame window object so we have a place to
put the button that we want to click.

Then we create a button object and add it to the frame, just
like the rectangles before.

25

Event handling
import javax.swing.JFrame;
import javax.swing.JButton;
import java.awt.event.ActionListener;

public class ButtonTester
{
 public static void main(String[] args)
 {
 JFrame myframe = new JFrame();
 final int F_WIDTH = 100;
 final int F_HEIGHT = 60;
 myframe.setSize(F_WIDTH, F_HEIGHT);
 myframe.setTitle("Button Tester");
 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton button = new JButton("Click me!");
 myframe.add(button);

 myframe.setVisible(true);
 }
}

26

Event handling
Next we'll see a program that tests our ClickListener class. It
looks very much like the program we wrote earlier.

First we create a frame window object so we have a place to
put the button that we want to click.

Then we create a button object and add it to the frame, just like
the rectangles before.

Finally we create an event listener object called ClickListener
and attach it to the button we just made.

27

Event handling
import javax.swing.JFrame;
import javax.swing.JButton;
import java.awt.event.ActionListener;

public class ButtonTester
{
 public static void main(String[] args)
 {
 JFrame myframe = new JFrame();
 final int F_WIDTH = 100;
 final int F_HEIGHT = 60;
 myframe.setSize(F_WIDTH, F_HEIGHT);
 myframe.setTitle("Button Tester");
 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton button = new JButton("Click me!");
 myframe.add(button);
 ActionListener listener = new ClickListener();
 button.addActionListener(listener);

 myframe.setVisible(true);
 }
}

28

Event handling

> java ButtonTester

29

Event handling
A button listener class like ClickListener is likely to be
specific to a particular button, so we don't really need it to be
widely accessible. We can put the class definition inside the
method or class that needs it. So we can put this class:

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

public class ClickListener implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 System.out.println("I was clicked.");
 }
}

inside the main method of the ButtonTester class as an inner
class.

30

Event handling
import javax.swing.JFrame;
import javax.swing.JButton;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent; // note this addition

public class ButtonTester2
{
 public static void main(String[] args)
 {
 JFrame myframe = new JFrame();
 final int F_WIDTH = 100;
 final int F_HEIGHT = 60;
 myframe.setSize(F_WIDTH, F_HEIGHT);
 myframe.setTitle("Button Tester");
 myframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton button = new JButton("Click me!");
 myframe.add(button);

31

Event handling
 class ClickListener implements ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {
 System.out.println("I was clicked.");
 }
 }

 ActionListener listener = new ClickListener();
 button.addActionListener(listener);

 myframe.setVisible(true);
 }
}

32

Making buttons do more
This next example is from the book too, but I've changed the
BankAccount class to the BunnyFamily class. Why?
Because everybody likes bunnies.

Let's say we want to compute the growth in the number of
bunnies in my bunny family through successive clicks of a
button. (OK, it's a stretch, but it's still better than the boring
bank account example.)

We'd start with a BunnyFamily class, of course. It has a
method for retrieving the number of bunnies in the family,
and another method for increasing the number of bunnies
according to the Fibonacci numbers.

33

Fibonacci numbers
Leonardo Pisano (1170 - 1250), also known as Fibonacci,
came up with a model of growth in an idealised bunny (really)
population.

Assuming that
in the first month there is just one newly-born pair
new-born pairs become fertile from their second month
each month every fertile pair spawns a new pair, and
the bunnies never die

Then if we have A pairs of fertile and newly-born bunnies in
month N and we have B pairs in month N+1, then in month
N+2 we'll have A+B pairs.

34

Fibonacci numbers
The numbers for our purposes are 2, 3, 5, 8, 13, 21, 34 and so
on.

Fibonacci was wrong about the growth of bunny populations,
but his numbers live on in mathematical history.

35

Making buttons do more
public class BunnyFamily
{
 private int totalBunniesNow;
 private int totalBunniesLastTime;

 public BunnyFamily()
 {
 totalBunniesNow = 2; // first two numbers in the
 totalBunniesLastTime = 1; // Fibonacci sequence
 }

 public int getBunnies()
 {
 return totalBunniesNow;
 }

 public void updateBunnies()
 {
 totalBunniesNow = totalBunniesNow + totalBunniesLastTime;
 totalBunniesLastTime = totalBunniesNow - totalBunniesLastTime;
 }
}

36

Making buttons do more
We start by importing everything but the proverbial kitchen
sink. Then we create our frame window.

37

Making buttons do more
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JTextField;

public class BunnyGrowthViewer
{
 public static void main (String[] args)
 {
 JFrame frame = new JFrame();
 frame.setSize(400, 100);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton button = new JButton("Add Bunnies");

 final BunnyFamily mybunnies = new BunnyFamily();

38

Making buttons do more
We start by importing everything but the proverbial kitchen
sink. Then we create our frame window.

Next we create the button object.

39

Making buttons do more
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JTextField;

public class BunnyGrowthViewer
{
 public static void main (String[] args)
 {
 JFrame frame = new JFrame();
 frame.setSize(400, 100);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton button = new JButton("Add Bunnies");

 final BunnyFamily mybunnies = new BunnyFamily();

40

Making buttons do more
We start by importing everything but the proverbial kitchen
sink. Then we create our frame window.

Next we create the button object.

Now we instantiate a BunnyFamily and call the object
mybunnies. Why is it final? Because inner classes can
access local variables from the surrounding scope only if the
variables are final, and we're going to want to access some
local variables from the surrounding scope inside the inner
class. (Note that final doesn't keep the internal state of the
mybunnies object from changing...it only means that once
mybunnies holds a reference to a particular BunnyFamily
object, mybunnies cannot then be assigned a different
reference.)

41

Making buttons do more
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JTextField;

public class BunnyGrowthViewer
{
 public static void main (String[] args)
 {
 JFrame frame = new JFrame();
 frame.setSize(400, 100);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton button = new JButton("Add Bunnies");

 final BunnyFamily mybunnies = new BunnyFamily();

42

Making buttons do more
We need a user interface component that displays a
message containing the current number of bunnies. Such a
component is called a label. Here's how it's created...

43

Making buttons do more
 final JLabel label = new JLabel("bunnies = " +
 mybunnies.getBunnies());

 JPanel panel = new JPanel();
 panel.add(button);
 panel.add(label);
 frame.add(panel);

 class AddBunniesListener implements ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {
 mybunnies.updateBunnies();
 label.setText("bunnies = " + mybunnies.getBunnies());
 }
 }

 ActionListener listener = new AddBunniesListener();
 button.addActionListener(listener);
 frame.setVisible(true);
 }
}

44

Making buttons do more
We need a user interface component that displays a
message containing the current number of bunnies. Such a
component is called a label. Here's how it's created...

We now want to put the button and label components in the
frame, but Java will place one on top of the other. Instead,
we create a panel object -- a panel is a container for other
user interface components -- and then add the panel to the
frame.

45

Making buttons do more
 final JLabel label = new JLabel("bunnies = " +
 mybunnies.getBunnies());

 JPanel panel = new JPanel();
 panel.add(button);
 panel.add(label);
 frame.add(panel);

 class AddBunniesListener implements ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {
 mybunnies.updateBunnies();
 label.setText("bunnies = " + mybunnies.getBunnies());
 }
 }

 ActionListener listener = new AddBunniesListener();
 button.addActionListener(listener);
 frame.setVisible(true);
 }
}

46

Making buttons do more
We need a user interface component that displays a
message containing the current number of bunnies. Such a
component is called a label. Here's how it's created...

We now want to put the button and label components in the
frame, but Java will place one on top of the other. Instead,
we create a panel object -- a panel is a container for other
user interface components -- and then add the panel to the
frame.

Next we define our specific event listener class.

47

Making buttons do more
 final JLabel label = new JLabel("bunnies = " +
 mybunnies.getBunnies());

 JPanel panel = new JPanel();
 panel.add(button);
 panel.add(label);
 frame.add(panel);

 class AddBunniesListener implements ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {
 mybunnies.updateBunnies();
 label.setText("bunnies = " + mybunnies.getBunnies());
 }
 }

 ActionListener listener = new AddBunniesListener();
 button.addActionListener(listener);
 frame.setVisible(true);
 }
}

48

Making buttons do more
We need a user interface component that displays a
message containing the current number of bunnies. Such a
component is called a label. Here's how it's created...

We now want to put the button and label components in the
frame, but Java will place one on top of the other. Instead,
we create a panel object -- a panel is a container for other
user interface components -- and then add the panel to the
frame.

Next we define our specific event listener class.

Then we create an event listener object and associate it with
the button. Finally, we make sure that everything is visible.

49

Making buttons do more
 final JLabel label = new JLabel("bunnies = " +
 mybunnies.getBunnies());

 JPanel panel = new JPanel();
 panel.add(button);
 panel.add(label);
 frame.add(panel);

 class AddBunniesListener implements ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {
 mybunnies.updateBunnies();
 label.setText("bunnies = " + mybunnies.getBunnies());
 }
 }

 ActionListener listener = new AddBunniesListener();
 button.addActionListener(listener);
 frame.setVisible(true);
 }
}

