University of British Columbia
CPSC 111, Intro to Computation
Jan-Apr 2006

Tamara Munzner

Loops
Lecture 12, Tue Feb 21 2006
based on slides by Kurt Eiselt

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr

News

= Welcome back!

m resume lectures, labs, tutorials, office hours
= Midterm and Assignment 1 returned

m pick up after class if you don't have yet

= midterm solutions posted on WebCT
= Assignment 2 posted soon

m probably later today

Reading

= This week: Chapter 7 all (7.1-7.4)

Recap: Comparing Strings

= Relational operator == is wrong way to compare

String namel = "Bubba";
String name2 = "Bubba";
System.out.println(namel == name2); // prints false

m equals method is right way to compare Strings

String namel
String name2

"Bubba" ;
"Bubba";

System.out.println(namel.equals(name2)); // prints true

= why? diagrams will help

Recap: Comparing Strings

= namel == name?2 : two different references, false

"Bubba"

name2

® namel.equals (name2) : contents same, true

Recap: Short-Circuting Evaluation

= Java evaluates complex expressions left to right
= short-circuiting: Java stops evaluating once value is
clearly true or false
= aka lazy evaluation

if ((b > a) && (c == 10))
System.out.println("when b<=a short-circuit");

if ((b > a) || (e == 10))
System.out.println("when b>a short-circuit");

m Corollary: avoid statements with side effects

if ((b > a) || (ct++))
System.out.println("Danger Will Robinson!");

Recap: Conditional Syntax

if (boolean expression) statement

else if (boolean expression) statement
= optional: zero, one, or many

else statement
= optiona

m if, else are reserved words
= parentheses mandatory
= statement can be
= single line
= block of several lines enclosed in { }

Recap: Comparing Floats/Doubles

= Relational operator for equality not safe for
floating point comparison

if (.3 == 1.0/10.0 + 1.0/10.0 + 1.0/10.0))
System.out.println ("Beware roundoff error");

m Check if difference close to 0 instead

if (Math.abs(fl - £2) < TOLERANCE)
System.out.println (“Essentially equal.”);

Recap: Comparing Characters

= Safe to compare character types with
relational operators

char ¢ = 'a';
char d = 'b';
if (¢ == d)

System.out.println("they match");

Recap: Switch Syntax

switch (expression) {

case value:
statements
break;

case value:
statements
break;

default:
statements

= switch, case, break are reserved words
= expression and value must be int or char
= value cannot be variable
= break important, or else control flow continues to next set
= statements can be one line or several lines
= default executed if no values match expression

Objectives

= Practice with conditionals
= Understand basic loops

public class NestTest3 {
public static void main (String[] args) {
respondToName ("Supercalifragilisticexpialidocious") ;
respondToName ("Ambrose") ;
respondToName ("Kermit") ;
respondToName ("Miss Piggy!!!");
respondToName ("Spot") ;
respondToName ("me") ;
}
public static void respondToName (String name) {
System.out.println("You're named " + name) ;
if (name.length() > 20) {
System.out.println("Gosh, long name");
System.out.println("Keeping typists busy...");
else if (name.length() > 30) {
System.out.println("Over the top");
else if (name.length() < 10) {
if (name.charAt(0) == 'A'")
System.out.println("You're first");
else if (name == "Kermit")
System.out.println("You're a frog");
System.out.println("I love animals");
else if (name.equals("Spot")) {
System.out.println("You're spotted");
else if (name.length() < 3) {
System.out.println("Concise!");

}

Repetition, Iteration, Loops

= Computers good at performing same task
many times

= Loops allow repetitive operations in programs
m aka iteration statements, repetition statements
= Loops handy in real life too

Climbing Stairs

= Am | at the top of the stairs?

Climbing Stairs

= Am | at the top of the stairs?
= No.
= Climb up one step.

Climbing Stairs

Am | at the top of the stairs?
No.

Climb up one step.

Am | at the top of the stairs?

Climbing Stairs

= Am | at the top of the stairs?
= No.

= Climb up one step.

= Am | at the top of the stairs?
= No.

= Climb up one step.

Climbing Stairs

Am | at the top of the stairs?
No.

Climb up one step.

Am | at the top of the stairs?
No.

Climb up one step.

Am | at the top of the stairs?

Climbing Stairs

= Am | at the top of the stairs?
= No.

= Climb up one step.

= Am | at the top of the stairs?
= No.

= Climb up one step.

= Am | at the top of the stairs?
= No.

= Climb up one step.

= Am | at the top of the stairs?
= No.

= Climb up one step.

= ..andsoon.

Washing Hair
= Lather

Washing Hair

m Lather
= Rinse

Washing Hair

m Lather
= Rinse
= Repeat

Washing Hair

m Lather
= Rinse
= Repeat

= When do you stop??

While Statement

while (boolean expression)
body

= Simplest form of loop in Java
= Body of loop can be
= single statement
= whole block of many statements in curly braces
= Control flow
= body executed if expression is true
= then boolean expression evaluated again
= if expression still true, body executed again
= repetition continues until expression false
= then processing continues with next statement after loop

If Versus While Statements

how if
statement
works

true false

A

If Versus While Statements

how if how while
statement statement
works works

true

| |
| T

false false

If Versus While Statements

how if how while
statement statement
works works

false

—

= How can loop boolean change from false to true?

If Versus While Statements

how if how while
statement statement
works works

false

—

m These diagrams called flowcharts

Using while Statements

public class WhileDemo
{
public static void main (String[] args)
{
int limit = 3;
int counter = 1;

while (counter <= limit)
{
System.out.println("The square of " + counter +
" is " + (counter * counter));
counter = counter + 1;
}
System.out.println("End of demonstration");
}
}

= while statement

Using while Statements

public class WhileDemo
{
public static void main (String[] args)
{
int limit = 3;
int counter = 1;

while| (counter <= limit)

System.out.println("The square of " + counter +
" is " + (counter * counter));
counter = counter + 1;
}
System.out.println("End of demonstration");
}
}

= boolean expression

Using while Statements

public class WhileDemo
{
public static void main (String[] args)
{
int limit = 3;
int counter = 1;

while (counter <= limit)

{
System.out.println("The square of " + counter +

counter = counter + 1;

}

is " + (counter * counter));

;

System.out.println("End of demonstration");

}
= while statement body

Using while Statements

public class WhileDemo
{
public static void main (String[] args)
{
int limit = 3;
int counter = 1;
while (counter <= limit)
{
System.out.println("The square of " + counter +
" is " + (counter * counter));
counter = counter + 1;
}

|System.out.println("End of demonstration") ;

}
}

= statement after while
= control flow resumes here when boolean is false

Using while Statements

public class WhileDemo
{
public static void main (String[] args)
{
int limit =
int counter

Y
=1;

while (counter <= limit)
{
System.out.println("The square of " + counter +
" is " + (counter * counter));
counter = counter + 1;
}

System.out.println("End of demonstration");

}
= trace what happens when execute

Using while Statements

public class WhileDemo

{
public static void main (String[] args)
{

int counter =

while (counter <= limit)
{
System.out.println("The square of " + counter +
" is " + (counter * counter));
counter = counter + 1;
}

System.out.println("End of demonstration");

Using while Statements

public class WhileDemo

{
public static void main (String[] args)
{

int limit =

while (counter <= limit)
{
System.out.println("The square of " + counter +
" is " + (counter * counter));
counter = counter + 1;
}

System.out.println("End of demonstration");

}

limit counter |I|

Using while Statements

public class WhileDemo
{
public static void main (String[] args)
{
int limit = 3;

int counter 1;

while (counter <= limit)

System.out.println("The square of " + counter +
" is " + (counter * counter));
counter = counter + 1;
}

System.out.println("End of demonstration");

counter |I| Is counter <= limit? yes

Using while Statements

public class WhileDemo
{
public static void main (String[] args)
{
int limit = 3;
int counter = 1;
while (counter <= limit)

{

System.out.println("The square of " + counter +
" is " + (counter * counter));

counter = counter + 1;
}

System.out.println("End of demonstration");

}

limit counter |I| Is counter <= limit? yes

"The square of 1 is 1" printed on monitor

Using while Statements

public class WhileDemo
{
public static void main (String[] args)

{

int limit = 3;
int counter = 1;
while (counter <= limit)
{
System.out.println("The square of " + counter +
" is " + (counter * counter));
|counter = counter + 1; |
}

System.out.println("End of demonstration");

counter

Using while Statements

public class WhileDemo
{
public static void main (String[] args)
{
int limit =
int counter

Y
=1;

while (counter <= limit)

System.out.println("The square of " + counter +
" is " + (counter * counter));
counter = counter + 1;
}
System.out.println("End of demonstration");
}
}

limit counter

Is counter <= limit? yes

Using while Statements

public class WhileDemo
{
public static void main (String[] args)

{

int limit = 3;
int counter = 1;
while (counter <= limit)

{

System.out.println("The square of " + counter +
" is " + (counter * counter));

counter = counter + 1;
}

System.out.println("End of demonstration");

counter Is counter <= limit? yes

"The square of 2 is 4" printed on monitor

Using while Statements

public class WhileDemo
{
public static void main (String[] args)
{
int limit = 3;
int counter = 1;
while (counter <= limit)
{
System.out.println("The square of " + counter +
" is " + (counter * counter));
|counter = counter + 1; |
}

System.out.println("End of demonstration");

}

limit counter

Using while Statements

public class WhileDemo
{
public static void main (String[] args)
{
int limit = 3;

int counter 1;

while (counter <= limit)

System.out.println("The square of " + counter +
" is " + (counter * counter));
counter = counter + 1;
}

System.out.println("End of demonstration");

counter Is counter <= limit? yes

Using while Statements

public class WhileDemo
{
public static void main (String[] args)
{
int limit = 3;
int counter = 1;

while (counter <= limit)

{

System.out.println("The square of " + counter +
" is " + (counter * counter));

counter = counter + 1;

}

System.out.println("End of demonstration");
}
}

limit counter Is counter <= limit? yes

"The square of 3 is 9" printed on monitor

Using while Statements

public class WhileDemo
{
public static void main (String[] args)
{
int limit = 3;
int counter = 1;
while (counter <= limit)
{
System.out.println("The square of " + counter +
" is " + (counter * counter));
|counter = counter + 1; |
}
System.out.println("End of demonstration");
}
}

limit counter II|

Using while Statements

public class WhileDemo
{
public static void main (String[] args)
{
int limit = 3;

int counter 1;

while (counter <= limit)

System.out.println("The square of " + counter +
" is " + (counter * counter));
counter = counter + 1;
}
System.out.println("End of demonstration");
}
}

limit counter II| Is counter <= limit? NO!

Using while Statements

public class WhileDemo

{
public static void main (String[] args)
{
int limit = 3;
int counter = 1;
while (counter <= limit)
{
System.out.println("The square of " + counter +
" is " + (counter * counter));
counter = counter + 1;
}
|System.out.println("End of demonstration");
}

}

limit counter II| Is counter <= limit? NO!

“End of demonstration” printed on monitor

Climbing Stairs Again

= Am | at the top of the stairs?
= No.

= Climb up one step.

= Am | at the top of the stairs?
= No.

= Climb up one step.

= Am | at the top of the stairs?
= No.

= Climb up one step.

= Am | at the top of the stairs?
= No.

= Climb up one step.

= ..andsoon.

Climbing Stairs Again

while (I'm not at the top of the stairs)

{

Climb up one step

= Climbing stairs is a while
loop!

Using while Statements

public class WhileDemo
{
public static void main (String[] args)
{
int limit = 3;
int counter = 1;
while (counter limit)
{

System.out.println("The square of " + counter +
" is " + (counter * counter));
counter = counter + 1;
}
System.out.println("End of demonstration");
}
}

= change termination condition

Using while Statements

public class WhileDemo
{
public static void main (String[] args)
{
int limit = 3;
int counter = 1;
while (counter limit)
{

System.out.println("The square of " + counter +
" is " + (counter * counter));
counter = counter + 1;
}
System.out.println("End of demonstration");
}
}

= change termination condition
= body of loop never executed

Using while Statements

public class WhileDemo
{
public static void main (String[] args)
{
int limit = 3;
int counter =

while (counter >=

{

System.out.println("The square of " + counter +
" is " + (counter * counter));

counter = counter + 1;

}

System.out.println("End of demonstration");

}
}

= change termination condition
= always true

1;

Infinite Loops

public class WhileDemo
{
public static void main (String[] args)
{
int limit = 3;

int counter 1;

while (counter >=

{

System.out.println("The square of " + counter +
" is " + (counter * counter));

counter = counter + 1;

}

System.out.println("End of demonstration");

}
}

= if termination condition always true, loop never ends

= infinite loop goes forever

Infinite Loops

public class WhileDemo
{
public static void main (String[] args)
{
int limit = 3;

int counter 1;

while|(counter <= limit)

{

System.out.println("The square of " + counter +
" is " + (counter * counter));
|counter = counter - 1;

}
System.out.println("End of demonstration");
}
}

= good termination condition
= but process never gets closer to condition

Infinite Loops

public class WhileDemo
{

public static void main (String[] args)
{

int limit = 9;
int counter = 0;

while|(counter = 1limit)

{

System.out.println("The square of " + counter +
" is " + (counter * counter));
|counter = counter + 2;

}
System.out.println("End of demonstration");
}
}

m process gets closer to termination condition
= but never satisfies condition, keeps going past it

Another while Example Questions?

public class PrintFactorials
{
public static void main (String[] args)
{
int limit = 10;
int counter = 1;
1;

int product

while (counter <= limit)
{
System.out.println("The factorial of " + counter +
" is " + product’\);
counter + 1;
product * counter;

counter
product

System.out.println("End of demonstration");
}
}

= accumulate product

