
University of British Columbia

CPSC 111, Intro to Computation

Jan-Apr 2006

Tamara Munzner

Conditionals II

Lecture 11, Thu Feb 9 2006

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr

based on slides by Kurt Eiselt

Reading

! This week: Chapter 6 all (6.1-6.4)

! Next week: Chapter 7 all (7.1-7.4)

! Reading summary so far:

! Chap 1, 2, 3, 4, 6

! (no Chap 5!)

News

! Next week is reading week

! no lectures or labs or tutorials

! Midterms returned today

! Grades, statistics already posted on WebCT

! returned end of class, line up by last name

reversed (Z-A)

! Assignment 1 was returned Tue

! pick up after class if you don't have it yet

Midterm Results

0

20

40

60

80

100

120

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141

0

20

40

60

80

100

120

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141

P
e
rc
e
n
ta
g
e

News

! Reminder: protocol for regrade requests

! read solution and marking scheme first, carefully

! no regrade requests accepted until at least 24 hours
after material is handed back

! exception: arithmetic errors

! regrade requests must be in writing (paper or email)

! assignments: to marker (listed on cover sheet)
! if still have dispute after discussion with TA, can escalate to

instructor

! exams: to instructor

Recap: Static Methods

! Static methods do not operate in context of
particular object

! cannot reference instance variables because they
exist only in an instance of a class

! compiler will give error if static method attempts to
use nonstatic variable

! Static method can reference static variables

! because static variables exist independent of specific
objects

Recap: Static Methods in java.Math

! Java provides you with many pre-existing static methods
! Package java.lang.Math is part of basic Java environment

! you can use static methods provided by Math class

! examples:

> Math.sqrt(36)

6.0

> Math.sin(90)

0.8939966636005579

> Math.sin(Math.toRadians(90))

1.0

> Math.max(54,70)

70

> Math.round(3.14159)

3

> Math.random()

0.7843919693319797

> Math.random()

0.4253202368928023

> Math.pow(2,3)

8.0

> Math.pow(3,2)

9.0

> Math.log(1000)

6.907755278982137

> Math.log10(1000)

3.0

Recap: Conditional Statement

! Conditional statement: choose which
statement will be executed next based on
boolean expression

! changes control flow

! Example

if (age < 20)
 System.out.println("Really, you look like you are "
 + (age + 5) + ".");

Recap: Boolean Expressions

! Boolean expression: test which returns either true
or false when evaluated

! aka conditional

! Consists of operands and operators, like arithmetic
expression

! but operators only return true or false when applied
to operands

! Two different kinds of operators

! relational

! sometime split into relational and equality

! logical

Recap: Relational Operators

! Tests two values (operands)

! Operators

! == equal

! returns true if they are equal, false otherwise

! note: do not confuse this with =

! != not equal

! returns true if they are not equal, false otherwise

! < less than

! <= less than or equal to

! > greater than

! >= greater than or equal to

Recap: Logical Operators

! Way to combine results from relational operators into single

test

! AND, OR, and NOT

! in terms from math or philosophy class

! Operators

! && logical AND

! || logical OR

! ! logical NOT

Objectives

! Understand how to compare objects and

primitive data types

! Understand syntax to use for conditionals

and switch statements

Comparing Strings

! How do we test for equality between Strings?

! Reminder:

! Strings are sequences of alphanumeric

characters

! create with constructor

! String firstname = new String("Donald");

! or with shortcut

! String lastname = "Duck";

! Strings are objects, not primitive types!

Comparing Strings

! Relational operator == is wrong way to compare

String name1 = "Bubba";

String name2 = "Bubba";

System.out.println(name1 == name2); // prints false

! Equals method is right way to compare Strings

String name1 = "Bubba";

String name2 = "Bubba";

System.out.println(name1.equals(name2)); // prints true

! why? diagrams will help

Comparing Strings

! these values tested for equality with test of
name1 == name2

! two different pointers (references), so false

name1

name2

"Bubba"

"Bubba"

Comparing Strings

! these values tested for equality with
name1.equals(name2)

! contents of objects are same, so true

name1

name2

"Bubba"

"Bubba"

Short-Circuting Evaluation

! Consider again expression

if ((b > a) && (c == 10))
 System.out.println("this should print");

! Java evaluates left to right

! if (b>a) is false, does value of (c == 10) matter?

! no! result of && must be false since one operand
already evaluated to false

! short-circuiting: Java does not evaluate

! aka lazy evaluation

Short-Circuting Evaluation

! Consider different expression

if ((b > a) || (c == 10))
 System.out.println("this should print");

! Java evaluates left to right

! if (b>a) is true, does value of (c == 10)
matter?

! no! result of || must be true since one operand
already evaluated to true

If Syntax

! Syntax
! reserved word if

! followed by boolean expression enclosed in
parentheses

! followed by statement

if (x == y)
 System.out.println("x equals y! ");

! Results

! if boolean evaluates to true, statement is executed

! otherwise statement is skipped, execution continues
with statement immediately following if statement

If-Else Syntax

! If statement may include optional else clause

! reserved word else

! followed by another statement

if (x == y)
 System.out.println("x equals y!");
else
 System.out.println("x is not equal to y!");

! Results

! if boolean evaluates to true, first statement is
executed

! otherwise (if boolean evalutes to false), statement
following else is executed

Block Statements

! Often want to do many actions, not just one, based
on condition

! Replace single statement with many statements
surrounded by curly braces

if (x == y)
{
 System.out.println("x equals y!");
 System.out.println("I'm happy");
}
else
{
 System.out.println("x is not equal to y");
 System.out.println("I'm depressed");
 System.out.println("How about you?");
}

Block Statements

! What if we leave out block in else clause?

if (x == y)

{

 System.out.println("x equals y!");

 System.out.println("I'm happy");

}

else

 System.out.println("x is not equal to y");

 System.out.println("I'm depressed");

 System.out.println("How about you?");

Nested If Syntax

! Statements within if-else statements can
themselves be if-else statements

public class NestTest
{
 public static void main (String[] args)
 {
 int x = 1; int y = 3; int z = 2;

 if (x == y)
 if (y == z)
 {
 System.out.println("all three values the same");
 }
 else
 {
 System.out.println("y is not equal to z");
 }
 else
 System.out.println("x is not equal to y");
 }
}

Nested If Syntax

! Multiple else statements also legal

 if(Boolean expression 1)
{
 // statements
}
else if(Boolean expression 2)
{
 // statements
}
else if(Boolean expression 3)
{
 // statements
}
else
{
 // statements
}

Nested If Syntax

! Rewriting NestTest using multiple else statements

public class NestTest2
{
 public static void main (String[] args)
 {
 int x = 1; int y = 3; int z = 2;

 if ((x == y) && (y == z))
 {
 System.out.println("all three values the same");
 }
 else if ((x == y) && (y != z))
 {
 System.out.println("y is not equal to z");
 }
 else
 System.out.println("x is not equal to y");
 }
}

Comparing Floating Point Numbers

! Is 0.3 the same thing as
1.0/10.0 + 1.0/10.0 + 1.0/10.0 ???

! Let’s try it out...

double sum = 1.0/10.0 + 1.0/10.0 + 1.0/10.0;

double literal = .3;

if (sum == literal)

 System.out.println (“Yup, they match");

else

 System.out.println (“Nope, don’t match");

System.out.println("Sum is "+sum+" literal +" literal);

Comparing Floating Point Numbers

! Is 0.3 the same thing as
1.0/10.0 + 1.0/10.0 + 1.0/10.0 ???

! No - very close, but not exactly what you expect

! 0.30000000000000004

! Beware! Write tests for “darn near equal” like:

if (Math.abs(f1 - f2) < TOLERANCE)

 System.out.println (“Essentially equal.”);

! where TOLERANCE is small number appropriate to
problem like 0.00000001

Comparing Characters

! You can compare character types with
relational operators

 'a' < 'b'
 'a' == 'b'
 'a' < 'A'

! Remember, cannot compare Strings with
relational operators

! or any other objects!

! must use methods like equals

Switch Syntax

! Use switch statement to get program to follow one
of several different paths based on single value

switch (finalMark)

{

 case 4:

 System.out.println("You get an A");

 break;

 case 3:

 System.out.println("You get a B");

 break;

 case 2:

 System.out.println("You get a C");

 break;

 default:

 System.out.println("See you next year");

}

Switch Syntax

! Expression should be int, char
! (or enumerated type)

switch (finalMark)

{

 case 4:

 System.out.println("You get an A");

 break;

 case 3:

 System.out.println("You get a B");

 break;

 case 2:

 System.out.println("You get a C");

 break;

 default:

 System.out.println("See you next year");

}

Switch Syntax

! Case values cannot be variables

switch (finalMark)

{

 case 4:

 System.out.println("You get an A");

 break;

 case 3:

 System.out.println("You get a B");

 break;

 case 2:

 System.out.println("You get a C");

 break;

 default:

 System.out.println("See you next year");

}

Switch Syntax

! Default statement optional, but very good idea

switch (finalMark)

{

 case 4:

 System.out.println("You get an A");

 break;

 case 3:

 System.out.println("You get a B");

 break;

 case 2:

 System.out.println("You get a C");

 break;

 default:

 System.out.println("See you next year");

}

Switch Syntax

! Break statements really important

switch (finalMark)

{

 case 4:

 System.out.println("You get an A");

 break;

 case 3:

 System.out.println("You get a B");

 break;

 case 2:

 System.out.println("You get a C");

 break;

 default:

 System.out.println("See you next year");

}

