Information Visualization Spatial, NecklaceMaps, Myriahedral Ex: Ballotmaps

Tamara Munzner

Department of Computer Science University of British Columbia

Week 8, 23 Oct 2025

Geographic Map

encode:

orientation

symbol/shape

https://www.cs.ubc.ca/~tmm/courses/547-25

poly marks with 2D shared boundaries,

cannot use other channels to show other

Beware: Population maps trickiness!

spurious correlations: most attributes

just show where people live

attributes, locked down as unavailable:

position / order channels,

using given spatial data

Thematic maps

Plan for today

- Ballotmaps

mini-lecture / Q&A

- geographic maps

small group exercises

· show spatial variability of attribute ("theme")

- combine geographic / reference map with (simple, flat) tabular data -join together

• region: shared-boundary poly marks (provinces, countries with outline shapes)

- also could have point marks (cities, locations with 2D lat/lon coords)

-paper: Necklace Maps [type: algorithm]

-paper: Myriahedral [type: algorithm]

- · region: categorical key attribute in table use to look up value attributes
- major idioms
- -choropleth
- symbol maps
- -cartograms

-dot maps

Beware: Population maps trickiness!

- spurious correlations: most attributes just show where people live
- consider when to normalize by population density · encode raw data values
 - tied to underlying population
 - · but should use normalized values - unemployed people per 100 citizens
 - mean family income

PET PEFVE #208: GEOGRAPHIC PROFILE MAPS WHICH ARE BASICALLY JUST POPULATION MAPS

[https://xkcd.com/1138]

Idiom: choropleth map

· use given spatial data

-paper: D3 [type: **system**]

-paper:Vega-Lite [type: system]

-reminder: NO CLASS Nov 6

- -when central task is understanding spatial relationships
- geographic geometry -table with I quant attribute per region
- encoding

Next time

· week 9 reading

- chap: Networks.

week 10 reading

-poly marks use given geometry for each region

-paper: Abyss-Explorer [type: **design study**]

- paper: Geneaology [type: **technique**]

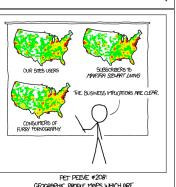
-paper: Polaris/Tableau [type: **system**]

- · with 2D shared boundaries
- encode: quant attribute with color • this example: sequential segmented colormap
- encode: position/order using given spatial data
- unavailable: size, orientation, shape/symbol
- only one mark type (polys)

Beware: Population maps trickiness!

- spurious correlations: most attributes just show where people live
- consider when to normalize by population density • encode raw data values
 - tied to underlying population · but should use normalized values
 - -unemployed people per 100 citizens,
 - mean family income

general issue


- -absolute counts vs relative/normalized data
- -failure to normalize is common error

http://bl.ocks.org/mbostock/4060606

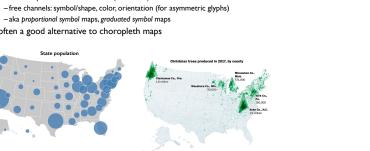
PET PEFVE #208 GEOGRAPHIC PROFILE MAPS WHICH ARE BASICALLY JUST POPULATION MAPS

Geographic Maps

Beware: Population maps trickiness!

[https://xkcd.com/1138]

Choropleth maps: Recommendations


- · can use when central task is understanding spatial relationships
- · show only one attribute at a time
- normalize when appropriate
- be careful when choosing colors & bins
- · best case: regions are roughly equal sized

Choropleth map: Pros & cons

- easy to read and understand -well established visualization (no learning curve)
- data is often collected and aggregated by geographical regions
- cons
- -most effective visual channel (position) used "just" for geographic location • reasonable if understanding spatial distribution / patterns is a central task
- -visual salience of color coding depends on region size • not true importance wrt attribute value
- · large regions appear more important than small ones

Idiom: **Symbol maps**

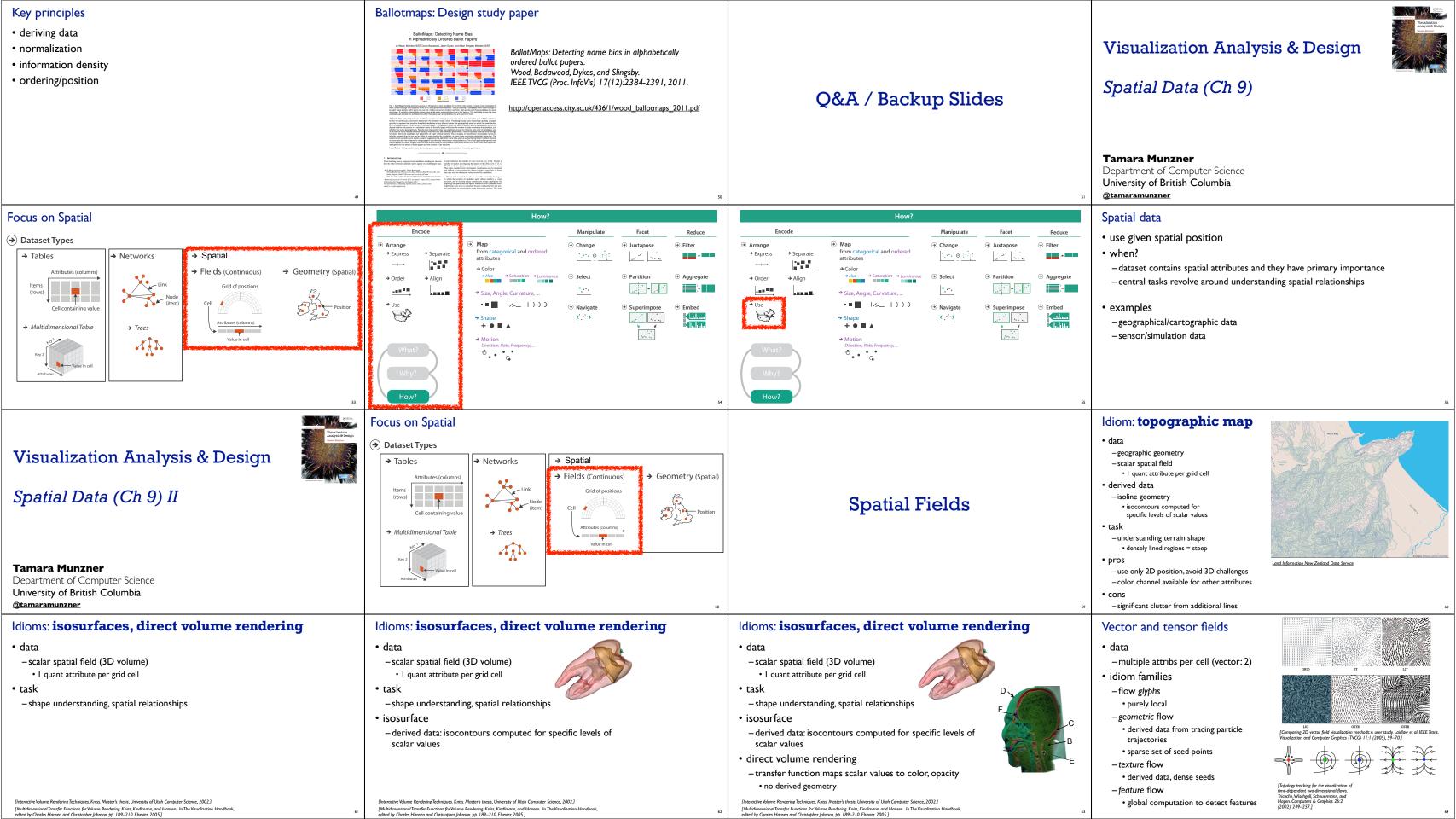
- family of idioms where symbol is used to represent aggregated data for region: point mark or glyph -add second mark type: two different kinds of marks at same level, base polys & new symbols
- · keep original spatial geometry in the background - one symbol per region on base map
- -encode quant attribute with size (ID or 2D)
- often a good alternative to choropleth maps

Symbol maps with glyphs

Symbol map: Pros & cons

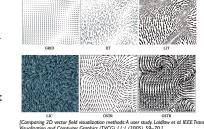
- - -somewhat intuitive to read and understand
 - mitigate problems with region size vs data salience
 - marks: symbol size follows attribute value
 - glyphs: overall symbol size can be uniform (within-glyph marks follow attribute values)
- -possible occlusion / overlap
 - symbols could overlap each other
 - symbols could occlude region boundaries
 - -complex glyphs may require explanation / training

-color palette choice has a huge influence on the result


PET PEFVE #208

GEOGRAPHIC PROFILE MAPS WHICH ARE BASICALLY JUST POPULATION MAPS

[https://xkcd.com/1138]


Idiom: Contiguous cartogram Idiom: Cartograms Idiom: **Dorling (circle) cartogram** Idiom: Equal-area (Grid) Cartogram • family of idioms where change all poly marks on map simultaneously · poly marks with 2D shared boundaries • Dorling cartogram - aka area-proportional continuous cartogram - only one mark type: replace old polys with new marks -throw away shape by regularizing to circles derive new interlocking polys • point marks, with shared 2D boundaries - with shared boundaries cannot change just one mark -- but can change all at once! - based on combination of original interlocking marks and -encode quant attribute with 2D size - original map polys have shared boundaries - encode relative locations of old polys with order - compute new set of interlocking polys, also with shared boundaries - encode: area (2D size) for new quant attribute - encode: order, maintaining relative position of polys • preserve relative position as much as possible from old to new - unavailable: position, orientation, shape/symbol many variants exist, different constraints • position: algorithm constraint to be as close as possible regularize shape & size, arranged in grid algorithm to create new marks to original geographic locations (given spatial data) - derive new point marks with 2D shared boundarie -preserve shapes as much as possible - input: target size (quant attribute) - unavailable channels: size, shape/symbol, orientation • orientation: meaningless since circles are symmetric • encode quant attribute with 2D size - goal: keep shape, position, orientation as close as symbol/shape: must be circle, by definition - unavailable: position, algorithm constraint to keep as close as possible to given spatial data possible to given spatial data for original polys - regularize to uniform shape for every region - free: color - encode relative location/arrangement of original polys with order - requirement: maintain constraints • encode quant attribute with color - encode quant attribute with color, just like with choroplet - can treat as special case of circle packing, with · order (relative position) • aka: grid map, mosaic cartogram, pseudo-Demers cartogram, geofacets, geogrid, tile - regularize to uniform size and shape · contiguous shared boundaries with neighbours quasi-geographic position constraints grid map, tile map Idiom: Multi-level unit cartograms Contiguous cartogram: Pros & cons Non-contiguous cartogram: Pros & cons Idiom: **Dot maps, one to one** visualize actual location of item / feature / phenomenon by placing dots - top level: poly marks (states) -stylized marks usually easier to understand than distorted contiguous shapes -can be intriguing and engaging using 2D position channel - bottom level: square point -best case: strong and surprising size disparities - can serve as good base for combining with other approaches -aka dot density maps marks (units) • especially equal-area versions with uniform shapes · countability for votes one point represents - equal-area approach can mitigate size disparities problems of cartograms -require substantial familiarity with original dataset & use of memory a specific item - shared 2D boundaries at cons • compare distorted marks to memory of original marks - free channels: color, size, symbol/shape each level • mitigation strategies: transitions or side by side views - still requires some familiarity with original dataset • F: population density thru two mark types at same level - major distortion is problematic "countable" whitespace - quasi-geographic positioning may need some explanation - dot points and region polys · may be aesthetically displeasing - special case, still consider - equal-area versions impose substantial distortions if original regions have very boundary as shared · may result in unrecognizable marks identify detailed spatial distributions / - difficult to extract exact quantities patterns, clusters, outliers https://flowingdata.com/2014/06/24/burger-place-geography/ Idiom: Dot density maps, many to one Dot density maps: Pros and cons Thematic maps combinations Map projections visualize distribution of a phenomenon by · can mostly mix and match these design elements · mathematical functions that map pros placing dot point marks where density curved 3D surface geometry of Earth to - one-to-one is straightforward to understand -choropleth can be combined with anything else within region shows quant attribute flat 2D maps -avoids choropleth non-uniform region size problems - cartograms can be used together with other approaches one symbol represents a constant number of items, all have · can use choropleth color coding cons same size/shape • can add symbols within those stylized regions all projections of sphere on plane necessarily - challenge: normalization, just like choropleths unavailable channels: size & shape & • can add dots with additional geographic locations for more attributes orientation distort surface in some way • show population density (correlated with attribute), not effect of interest - symbol maps difficult to use together with dot maps -location random within region, not -imagine flattening orange peel onto table - perceptual disadvantage: meaningful! • ambiguity about whether point mark acting as difficult to extract quantities · something must give - symbol (aggregate mark representing data for entire region), or unavailable channel: position - cannot have all 3 correct: area, angles, contiguity - performance disadvantage: - one-to-one dot (mark with meaningful position representing specific item of data), or -free channel: color - many-to-one dot (mark with random position representing many items of data) rendering many dots can be slow -aka dot distribution maps -many-to-one (density) may confuse if random positions assumed two mark types at same level (point, poly) Jarke van Wijk, Unfolding the Earth: Myriahedral Projections. to be meaningful The Cartographic Journal, Vol. 45, No. 1, pp.32-42, February 2008. show high-level spatial patterns, clusters Mercator Projection Map Projections Idiom: Necklace maps angles correct: designed for ship navigation · many, many, many projections proposed symbol map variant areas are wrong: distorts country sizes -place symbols algorithmically • interactive: jasondavies.com/maps/ outside, not inside, region especially when close to the poles -goal: address clutter problem -map 2D data to ID domain Paper: Necklace Maps strengths -addresses clutter problem - can be hierarchical limitations -weaker association between symbol and region [Fig 3. Necklace Maps. Bettina Speckmann and Kevin Verbeek. TVCG (16)6:881-889, 2010.] [Every Map Projection](https://bl.ocks.org/mbostock

Necklace maps Necklace map extensions / variations Scope algorithm: multiple variants provided in many cases · multiple necklaces contribution: propose technique and propose algorithm -some explanation / analysis of what it's good for -compute feasible intervals nested - optimize symbol sizes disjoint evaluation - optimize symbol placements - qualitative analysis/discussion of result images flows quality criteria: some tradeoffs - high-level performance discussion Paper: Myriahedral -symbol position wrt associated region - maximal symbol size disjoint symbols - suitable order of symbols along line [Fig 9, 10, 11. Necklace Maps. Bettina Speckmann and Kevin Verbeek. TVCG (16)6:881-889, 2010.] Myriahedral projections Myriahedral projections algorithmic framework for many possible projections • project from 2D sphere surface to 2D plane -can only fully preserve 2 out of 3 -including unusual ones · angles: conformal • later re-implementation from Belmonte: · area: equal area https://philogb.github.io/page/myriahedral/ • contiguity: no interruptions Break 3-3:10 **Breakouts** [Unfolding the Earth: Myriahedral Projections. Jarke J. van Wijk. The Cartographic Journal, 45(1):32-42, 2008.] https://www.win.tue.nl/~vanwijk/ myriahedral/ [Unfolding the Earth: Myriahedral Projections. Jarke J. van Wijk. The Cartographic Journal, 45(1):32-42, 2008.] **PosAcross** AcrossDistrib Best of both worlds: quasi-geographic positioning Spatially ordered treemaps • To what extent does the position in the ballot affect the number of votes • choropleth: size issues • Does the ballot-position influence vary geographically in different boroughs? quasi-geographic positions Spatially ordered treemaps. received by a candidate, overall? Is there variation across political party? Wood and Dykes. • tabular: lose geographic position information IEEE TVCG (Proc. InfoVis) 14(6):1348-1355, 2008. Borough: count of 32 Votes: 0-N • Position Overall: 1-9 • Party: I-3 (Lab, LibDem, Cons) [Fig 1. BallotMaps: Detecting name bias in alphabetically ordered ballot papers. • derived: Position_Within: I-3 Wood, Badawood, Dykes, and Slingsby. IEEE TVCG (Proc. InfoVis) 17(12):2384-2391, 2011.1 [Fig 5. BallotMaps: Detecting name bias in alphabetically ordered ballot papers. Wood, Badawood, Dykes, and Slingsby. IEEE TVCG (Proc. InfoVis) 17(12):2384-2391, 2011.] If no name order bias existed, all bars would be same length; If no name order bias existed, but systematic structure visible all bars would be same length; Fig. 5. Alpha position and vote order for, all candidates (gray); Labour candidates (red); Conservative (blue) and Liberal Democrat (orange). If no name order bias existed, all bars would be about the same length. AcrossDistrib, Take 2 **PosWithin NameEthnicity NameEthnicity** Does it vary in different wards? Does it depend on party affiliation? • To what extent does the position in the ballot influence the number of votes a candidate • To what extent does the perceived ethnicity of candidate's name matter? · Does this effect vary with geography? gets within their party? [Fig 8. BallotMaps: Detecting name bia in alphabetically ordered ballot papers. Wood, Badawood, Dykes, and Slingsby. Ward: count of 614 Name: English or Celtic · Signed Chi: -I to I IEEE TVCG (Proc. InfoVis 17(12):2384-2391, 2011.] vs Other Origins • Residual: - I to I [Fig 4. BallotMaps: Detecting name bias in alphabetically ordered ballot papers. Wood, Badawood, Dykes, and Slingsby. IEEE TVCG (Proc. InfoVis) 17(12):2384-2391, 2011.] [Fig 7. BallotMaps: Detecting name bias in alphabetically ordered ballot papers. IFig 6. BallotMaps: Detecting name bias Wood, Badawood, Dykes, and Slingsby. IEEE TVCG (Proc. InfoVis) 17(12):2384-2391, 2011.] Wood, Badawood, Dykes, and Slingsby. Yes. Varies by both borough IEEE TVCG (Proc. InfoVis 17(12):2384-2391, 2011.] & perceived ethnicity If no name order bias existed, Name order bias differs w/ If no name order bias existed, dark/light random distribution; THE THE DAY SHOW STATE SAN THE perceived ethnicity: but systematic structure visible! green/purple random distribution; green/purple structure more but systematic structure visible! visible on right than left!

Vector fields

- empirical study tasks
- -finding critical points, identifying their
- -identifying what type of critical point is at a specific location
- -predicting where a particle starting at a specified point will end up (advection)



[Comparing 2D vector field visualization methods: A user study. Laidlaw et al. IEEE Trans.
Visualization and Combuter Grabhics (TVCG) 11:1 (2005), 59–70.

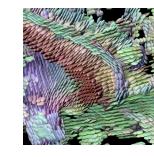
[Topology tracking for the visualization of time-dependent two-dimensional flows. Tricoche, Wischgoll, Scheuermann, and Hagen. Computers & Graphics 26:2 (2002), 249–257.]

Idiom: similarity-clustered streamlines

- data
- -3D vector field
- derived data (from field)
- streamlines: trajectory particle will follow
- derived data (per streamline)
- curvature, torsion, tortuosity
- signature: complex weighted combination
- compute cluster hierarchy across all signatures
- encode: color and opacity by cluster
- tasks
- find features, query shape
- scalability
- millions of samples, hundreds of streamlines

[Similarity Measures for Enhancing Interactive Streamline Seeding McLoughlin, Jones, Laramee, Malki, Masters, and. Hansen. IEEE Trans. Visualization and Computer Graphics 19:8 (2013), 1342–1353.]

Idiom: Ellipsoid Tensor Glyphs


- -tensor field: multiple attributes at each cell (entire matrix)
- stress, conductivity, curvature, diffusivity...

[Superquadric Tensor Glyphs. Kindlmann. Proc. VisSym04, p147-154, 2004.]

- derived data:
- shape (eigenvalues)
- orientation (eigenvectors)

visual encoding

-glyph: 3D ellipsoid

Arrange spatial data

Use Given

→ Geometry

→ Spatial Fields

→ Geographic

- → Scalar Fields (one value per cell)
- → Isocontours
- → Direct Volume Rendering

- → Vector and Tensor Fields (many values per cell)
- → Flow Glyphs (local)
- → Geometric (sparse seeds)
- → Textures (dense seeds)
- → Features (globally derived)

ተለተለማ **የ**