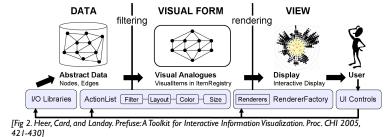
Paper: Polaris Paper: D3 Paper: Vega-Lite Tamara Munzner

Department of Computer Science

University of British Columbia CPSC 547, Information Visualization

Week II: 13 November 2025


Toolkits · imperative: how

www.cs.ubc.ca/~tmm/courses/547-25

- -low-level rendering: Processing, OpenGL -parametrized visual objects: prefuse
- also flare: prefuse for Flash
- declarative: what
- -Protoviz, D3, ggplot2
- -separation of specification from execution considerations
- -expressiveness
- · can I build it?
- –efficiency
- · how long will it take -accessibility
- do I know how?

prefuse

- separation: abstract data, visual form, view -data: tables, networks
- -visual form: layout, color, size, ...
- -view: multiple renderers

Protovis Validation

- wide set of old/new app examples -expressiveness, effectiveness, scalability
- -accessibility analysis with cognitive dimensions of notation
- -closeness of mapping, hidden dependencies
- -role-expressiveness visibility, consistency -viscosity, diffuseness, abstraction
- -hard mental operations
- [Cognitive dimensions of notations. Green (1989). In A. Sutcliffe and

L. Macaulay (Eds.) People and Computers V. Cambridge, UK: Cambridge University Press, pp 443-460.]

Plan for today

- · peer review one direction break
- peer review other direction mini-lecture on systems papers

WebGL/OpenGL graphics library

- power and flexibility, complete control for graphics · hardware acceleration
- many language bindings: js, C, C++, Java (w/ JOGL) -cons
- big learning curve if you don't know already · no vis support, must roll your own everything
- -example app:TreeJuxtaposer (OpenGL)

• conceptual model underneath design of prefuse and many other toolkits

InfoVis Reference Model

- heavily influenced much of infovis (including nested model) -aka infovis pipeline, data state model
- Data Visual Form Task Visual Source Data Views Data Tables Abstraction Data Visual Transformations Mappings Transformations

[Redrawn Fig 1.23. Card, Mackinlay, and Shneiderman. Readings in Information Visualization: Using Vision To Think, Chapter 1. Morgan Kaufmann, 1999.]

- declarative infovis toolkit, in Javascript Protovis meets Document Object Model
- -seamless interoperability with Web -explicit transforms of scene with dependency info
- -massive user community, many thirdparty apps/libraries on top of it, lots of docs
- -even more different from traditional programming model

pros

- example apps: many

Paper: D3 System

• layer on top of Java/OpenGL, Javascript/WebGL

- visualization esp. for artists/designers pros
- -great sandbox for rapid prototyping -huge user community, great documentation

cons

Processing / p5.js

- -poor widget library support
- example app: MizBee

[Fig 1. Meyer et al. MizBee: A Multiscale Synteny Browser. Proc. InfoVis 2009.] Declarative toolkits

- imperative tools/libraries -say exactly **how** to do it
- -familiar programming model · OpenGL, prefuse, ...
- declarative: other possibility -just say what to do
- -Protovis, D3

D3

objectives

-compatibility

-performance

related work typology

-graphics libraries

-infovis systems

InfoVis), 2011.]

-document transformers

• general note: all related work sections are a mini-taxonomy/typology!

[D3: Data-Driven Documents. Bostock, Ogievetsky, Heer. IEEE Trans. Visualization & Comp. Graphics (Proc.

debugging

- declarative infovis toolkit, in lavascript
- -also later lava version marks with inherited properties

Advanced Visual Interfaces (AVI), pp. 421–424, 2004.]

- pros
- -runs in browser

Protovis

Paper: D3

paper types

-evaluation

-system

InfoVis), 2011.]

prefuse

cons

-design studies

-technique/algorithm

-model/taxonomy

• infovis toolkit, in Java

-heavily used (previously)

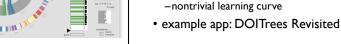
-no longer active

-very powerful abstractions

- -matches mark/channel mental model
- -also much more: interaction, geospatial, trees,... cons
- -not all kinds of operations supported
- example app: NapkinVis (2009 course project)

[Fig 1, 3. Chao. NapkinVis. http://www.cs.ubc.ca/~tmm/courses/533-09/projects.html#will]

[D3: Data-Driven Documents. Bostock, Ogievetsky, Heer. IEEE Trans. Visualization & Comp. Graphics (Proc.


· fine-grained building blocks for tailored visualizations

[DOITrees Revisited: Scalable, Space-Constrained Visualization of Hierarchical Data. Heer and Card. Proc

-quickly implement most techniques covered so far

D3 capabilities

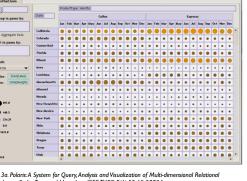
- query-driven selection
- -selection: filtered set of elements queries from the current doc · also partitioning/grouping!
- -operators act on selections to modify content
- instantaneous or via animated transitions with attribute/style interpolators
- · event handlers for interaction
- · data binding to scenegraph elements
- -data joins bind input data to elements
- -enter, update, exit subselections -sticky: available for subsequent re-selection
- -sort, filter
- [D3: Data-Driven Documents. Bostock, Ogievetsky, Heer. IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2011.]

D3 Features

- document transformation as atomic operation
- -scene changes vs representation of scenes themselves
- immediate property evaluation semantics
- -avoid confusing consequences of delayed evaluation
- validation
- -performance benchmarks
- page loads, frame rate
- -accessibility
- -(adoption)
- everybody has voted with their feet by now!

Paper: Polaris/Tableau System

Polaris

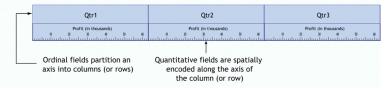


Chris Stolte, Diane Tang, Pat Hanrahan

Polaris: A System for Query, Analysis and Visualization of Multi-dimensional Relational Database Stolte, Tang and Hanrahan, IEEE TVCG 8(1):52-65 2002

Polaris: Stolte, Tang, and Hanrahan

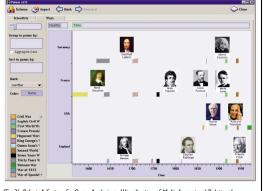
- infovis spreadsheet
 - -table cells have graphical elements, not just numbers
 - -wide range of channels and marks
 - example
 - marks: circles
 - color channel: saturation
 - size channel: area
 - partition: state x product:month
 - ord x ord



[Fig 3a. Polaris: A System for Query, Analysis and Visualization of Multi-dimensional Relational Databases. Stolte, Tang and Hanrahan, IEEE TVCG 8(1):52-65 2002.]

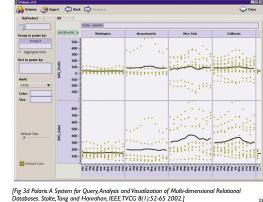
Table Algebra :: Interactive Interface

- drag and drop actions map to formal language underneath
- -partitioning using shelves
- different results for ord vs quant


O×Q = Quarter × Profit = {(Qtr1,Profit), (Qtr2, Profit), (Qtr3, Profit), (Qtr4, Profit)}:

[Fig 2. Polaris: A System for Query, Analysis and Visualization of Multi-dimensional Relational Databases. Stolte, Tang and Hanrahan, IEEETVCG 8(1):52-65 2002.]

Polaris


- example
- marks: Gantt chart bars
- -color channels: nominal / categorical
- spatial position channels: country x year
- ord x quant

[Fig 3b. Polaris: A System for Query, Analysis and Visualization of Multi-dim Databases. Stolte, Tang and Hanrahan, IEEE TVCG 8(1):52-65 2002.]

Polaris

- example
- -views: scatterplots
- marks: points
- spatial position channels: profit x month
- quant x (2 ord)

Terminology I: Now and Upcoming

- Marks and Channels
- retinal variables/properties: visual channels
- mark: mark
- Data Abstraction
- -column or field: attribute
- nominal: categorical
- · ordinal: ordered
- quantitative: quantitative
- -row or record: item
- dimension / independent / ordinal: key attribute
- all ordinal fields treated as dimensions in Polaris
- measure / dependent : value attribute
- all quantitative fields treated as measures in Polaris

Terminology II: Upcoming

- Data Abstraction
- deriving data
- Map Color and Other Channels
- hue: hue
- -value: saturation
- brightness: luminance
- Manipulate View
- -sorting
- Facet Into Multiple Views
- -partitioning
- -brushing: linked highlighting

-aggregation, filtering

· Reduce Items and Attributes

Polaris: Pre and post

- influences
- Bertin's Semiology of Graphics book (1967 / 1998)
- -Wilkinson's Grammar of Graphics book (1999 / 2005)
- Mackinlay's APT paper/system (1986)
- Cleveland's Visualizing Data book (1993)
- Stolte and Hanrahan commercialized as Stanford spinoff Tableau Software
- -major success story in vis, \$2B IPO in 2013
- Mackinlay joined in 2004, Wilkinson joined in 2014
- · Tableau use in this course
- -very useful for analysis projects
- -possible sandbox for experimentation when starting programming projects
- -you can request free student license, good for one year
- http://www.tableau.com/academic/students