Information Visualization

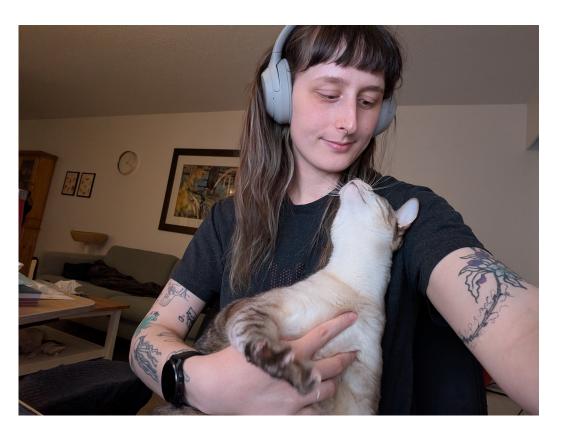
Intro, Time Series Exercise

Tamara Munzner

Department of Computer Science University of British Columbia

4 September 2025

http://www.cs.ubc.ca/~tmm/courses/547-25


Welcome!

547: who's who

- Instructor:
 - -Tamara Munzner (she)

- TA:
 - Mara Solen (she)

Land acknowledgement

- I want to acknowledge that UBC is on the traditional, ancestral, and unceded territory of the Musqueam people
- When I'm zooming from home, I want to acknowledge I'm working from the unceded territory of the Musqueam, Sto:lo, Squamish, & Tsleil-Waututh First Nations
- unpacking
 - Traditional: recognizes lands traditionally used and/or occupied by the First Nations
 - -Ancestral: recognizes land that is handed down from generation to generation
 - -Unceded: refers to land that was not turned over to the Crown (government) by a treaty or other agreement

Course Logistics

Finding info; finding me

- course page is font of all information
 - -don't forget to refresh, frequent updates
 - -http://www.cs.ubc.ca/~tmm/courses/547-25
- email is the best way to reach me: tmm@cs.ubc.ca
- office hours Thu right after class (5pm until all questions answered) or by appointment (in-person or zoom), send email to schedule
 - -my office is X661 (X-Wing of ICICS/CS bldg)
 - but unlikely to catch me by dropping by, usually either in meeting or elsewhere

Delivery mechanisms

- Live: small-group work, discussion / Q&A, lecture
- Web:
 - outwards: syllabus & all instructional materials, slides, videos, project deliverables
 - inwards: gdocs for small group work
- Piazza: all asynchronous discussion, also logistics and other updates
- Canvas: all handin, some marks (simple numeric)
- email: some marks (written feedback)

Intros

- async: Piazza self-intro thread
- sync: also sign up on spreadsheet so I see who's here (vs who's registered)
 - -will use that for breakouts today also
 - if you have privacy concerns, ok to leave off email (and/or last name) and send it to me directly
 - -link on course page

Audience

- no formal prerequisites
 - -many areas helpful but not required
 - human-computer interaction (HCI), eg CPSC 544 this term or equivalent
 - computer graphics, cognitive psychology, machine learning, statistics, algorithms, <application domain>...
 - -programming skills required for most project types
- open to non-CS people
 - -if no programming background, can do analysis or survey project
- communication skills in English important for success
 - -substantial reading, writing, discussion, presentations
- need strength in at least one of these 3: programming, English, HCI
 - -unsuccessful combination: weak ESL, weak programming, no HCl background
- open to informal auditors
 - -some or all days of readings/discussion/exercises, you'll get out of it what you put into it...

Enrollment

- · don't worry if you're not registered yet, just attend and keep up
 - -major churn is normal the first few weeks
 - -spaces will definitely open up
- do make sure you've signed up on spreadsheet!

Schedule, big picture

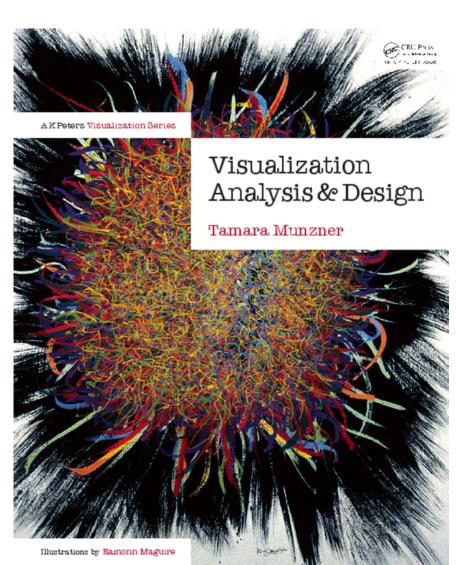
- Thu Sep 4, first class: today!
- once/week, 2-5pm Thursdays, 13 sessions
 - -with short break roughly halfway through
- no class
 - Thu Nov 6, annual IEEE VIS conference
- Thu Dec II, final presentations: afternoon, exact time TBD (I-5pm?)
- Mon Dec 15, final reports due (noon)

Marking

- 50% Project
 - -25% Intermediate Milestones (pass/fail)
 - so you'll get feedback along the way
 - formative not summative, goal: help you make projects the best they can be!
 - 15% Final Presentation
 - -25% Final Report
 - -60% Content
- 37% Asynchronous Readings & Online Discussion
 - -75% Comments on Readings, 25% Responses to Others
 - -4% per week, weeks 2-10; 1% per week, weeks 1
- 13% In-Class Participation
 - 12% In-Class Exercise Participation (12 sessions, 1% per session)
 - Week 4 pitch sessions participation marked through project bucket
 - 1% Final Presentations Participation

- marking buckets
 - great 100%
 - good 89%
 - ok 78%
 - poor 67%
 - zero 0%

Fundamental material


- first part: read & participate [50%]
 - -before class: async discussion [37%]
 - you do readings (3/week, mix of chapters & papers)
 - you submit comments before class (by Tue noon)
 - you respond to at least one comment from classmates (by Thu noon)
 - -during class [13%]
 - frequent in-class work/exercises/critique
 - some lecture & discussion

Readings

- textbook
 - -Tamara Munzner. Visualization Analysis and Design. AK Peters Visualization Series.

CRC Press, 2014.

- http://www.cs.ubc.ca/~tmm/vadbook/
- -library has free ebooks
- -to buy yourself, cheapest is amazon.com
 - hardcover bundled with ebook
- papers
 - -links posted on course page
 - -if DL links, use library OpenAthens from off campus
- 3 each session: mix of chapters & papers

Comments submission & marking

- written comments on reading in advance, in two rounds
- round I due noon Tue (2 days before class), 75% of comment mark
 - I for each reading
 - post to Piazza
- round 2 due noon Thu (2 hrs before class), 25% of comment mark
 - -written response to at least I comment per session/week
- start as pass/fail marking, see how it goes
 - -switch to explicit marking if quality concerns

Comments content

- comments or questions
 - -**NOT** summaries
- fine to be less formal than written report
 - -correct grammar and spelling still expected
 - -be concise: one paragraph is good
- · should be thoughtful, show you've read and reflected
 - -poor to ask something trivial to look up
 - -ok to ask for clarification of genuinely confusing section
 - -good to show that you're thinking carefully about what you read
 - -great to point out something that I haven't seen before
- examples on http://www.cs.ubc.ca/~tmm/courses/547-25/structure.html

Participation & missed work

- in-class group/individual exercises
- workshopping/critique for projects
- crucial part of course, attendance expected
 - -tell me in advance if you'll miss class (and why)
 - unless ill or emergency
 - -written comments credit still possible if submitted in advance for async
- but if you cannot attend class (illness, quarantine, visa, other)
 - you can work through in-class exercises solo
 - inform me by private post on Piazza when done
 - UBC policy is to self-declare illness (no need for doctor note)

Projects [50%]

- groups of 2, 3, or 4
 - -amount of work commensurate with group size
 - -permission for solo project granted in exceptional circumstances, by petition

stages

- -milestones along the way, mix of written & in-class
 - formative feedback only
 - pitches (data/task), proposals, peer project reviews
- -final versions
 - final presentations (oral): Thu Dec 11, afternoon (1-5?)
 - whole dept invited, refreshments served. live talk or prerecorded video, your choice
 - final reports (written): Mon Dec 15, noon
 - summative written feedback for both

resources

-more on datasets and tools later

Projects

programming

- -common case (I will only consider supervising students who do these)
- -four types
 - problem-driven design studies (target specific task/data)
 - technique-driven (explore design choice space for encoding or interaction idiom)
 - algorithm implementation (as described in previous paper)
 - interactive explainer (like distill articles)

analysis

- -use existing tools on dataset
- -detailed domain survey
- -particularly suitable for non-CS students

survey

- -very detailed domain survey
- -particularly suitable for non-CS students

Projects: Design studies

- BYOD (Bring Your Own Data)
 - -you (or your teammates) have your own data to analyze
 - thesis/research topic
 - personal interest
 - dovetail with another course (sometimes works, but timing may be tricky)
- FDOI (Find Data Of Interest)
 - -many existing datasets, see resource page to get started
 - http://www.cs.ubc.ca/group/infovis/resources.shtml
 - -can be tricky to determine reasonable task

Project examples

• http://www.cs.ubc.ca/~tmm/courses/547-25/projectdesc.html#examp

This week

- async read only
 - Course Logistics (no comments, no responses)
- async read & comment
 - -VAD Chapter I (comments only, no responses)
 - -due Sun Sep 7 noon
- async discuss
 - self-intros
 - -due Sun Sep 7 noon
- sync (now!)
 - -logistics Q&A
 - -time series exercise
 - small groups mixed with lecture / discussion

Next Time

- to read & discuss (async, before next class)
 - -VAD book, Ch 2:What: Data Abstraction
 - -VAD book, Ch 3:Why:Task Abstraction
 - -paper: Nested Model
- round I comments on readings due Tue Sep 9 noon
- round 2 responses due Thu Sep II noon

Break: 2:55-3:05

move into small breakout groups by end of break

Visualization

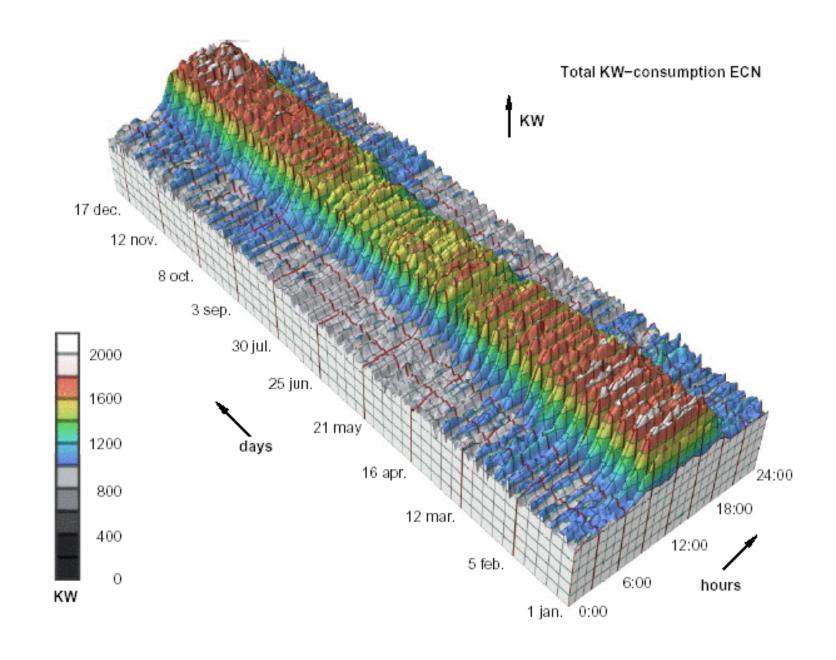
Visualization (vis) defined & motivated

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

- human in the loop needs the details
 - -doesn't know exactly what questions to ask in advance
 - -longterm exploratory analysis
 - **speed up** through human-in-the-loop visual data analysis
 - -presentation of known results
 - -stepping stone towards automation: refining, trustbuilding
- intended task, measurable definitions of effectiveness

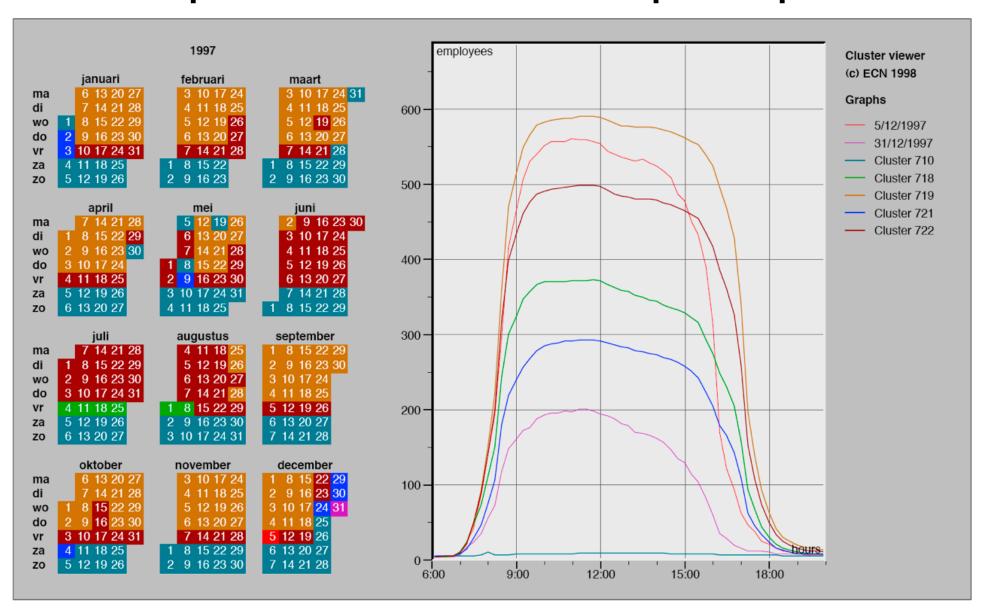
Exercise: Time Series

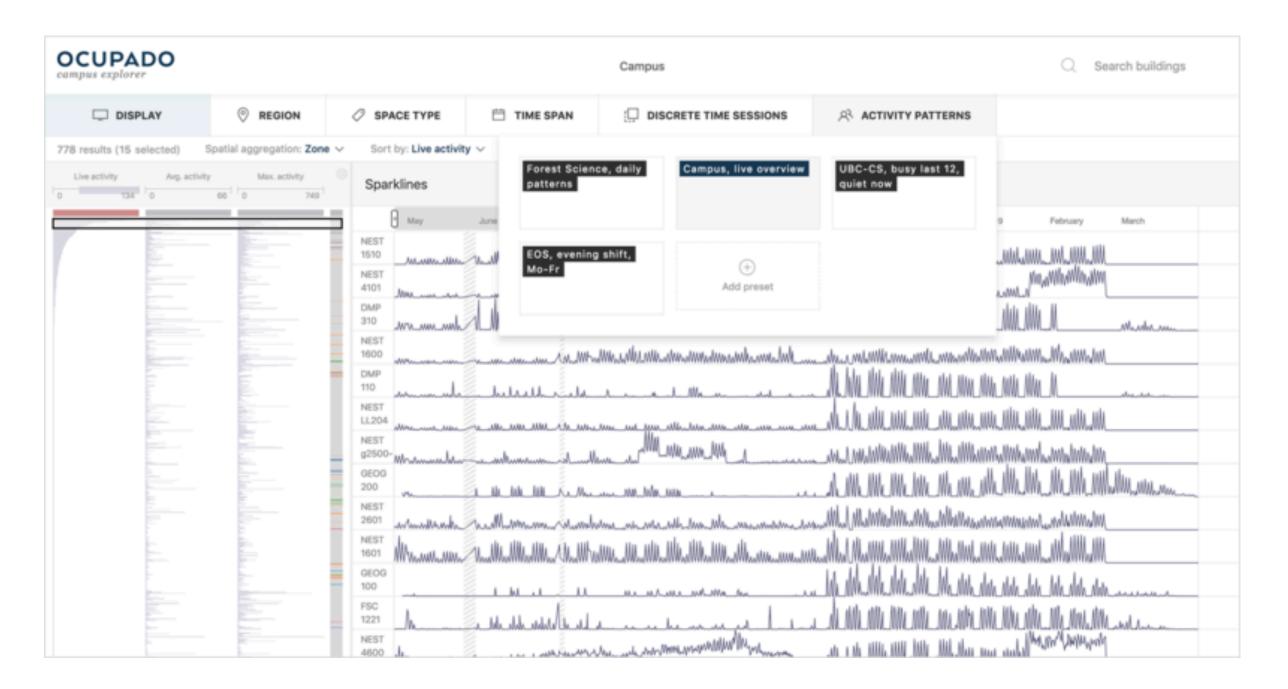

Now: In-class design exercise, in small groups

- Three time-series scenarios
 - I: every 5 min, duration I year, I thing: building occupancy rates
 - -2: several years and several things: every 5 min, 5 years, 10 currencies
 - -3: several parameters, many things: every 5 min, 1 year, 10 params on 1000 machines
- Small-group exercise: 90 min
 - -breakout groups (2-3 people/group)
 - -brainstorm possible visual encodings & interactions for each scenario
 - -document in your group's googledoc w/ text & sketch images
 - -reportback: I'll flip through googledocs, some questions for group spokesperson
- Design space examples/discussion: I5-20 min

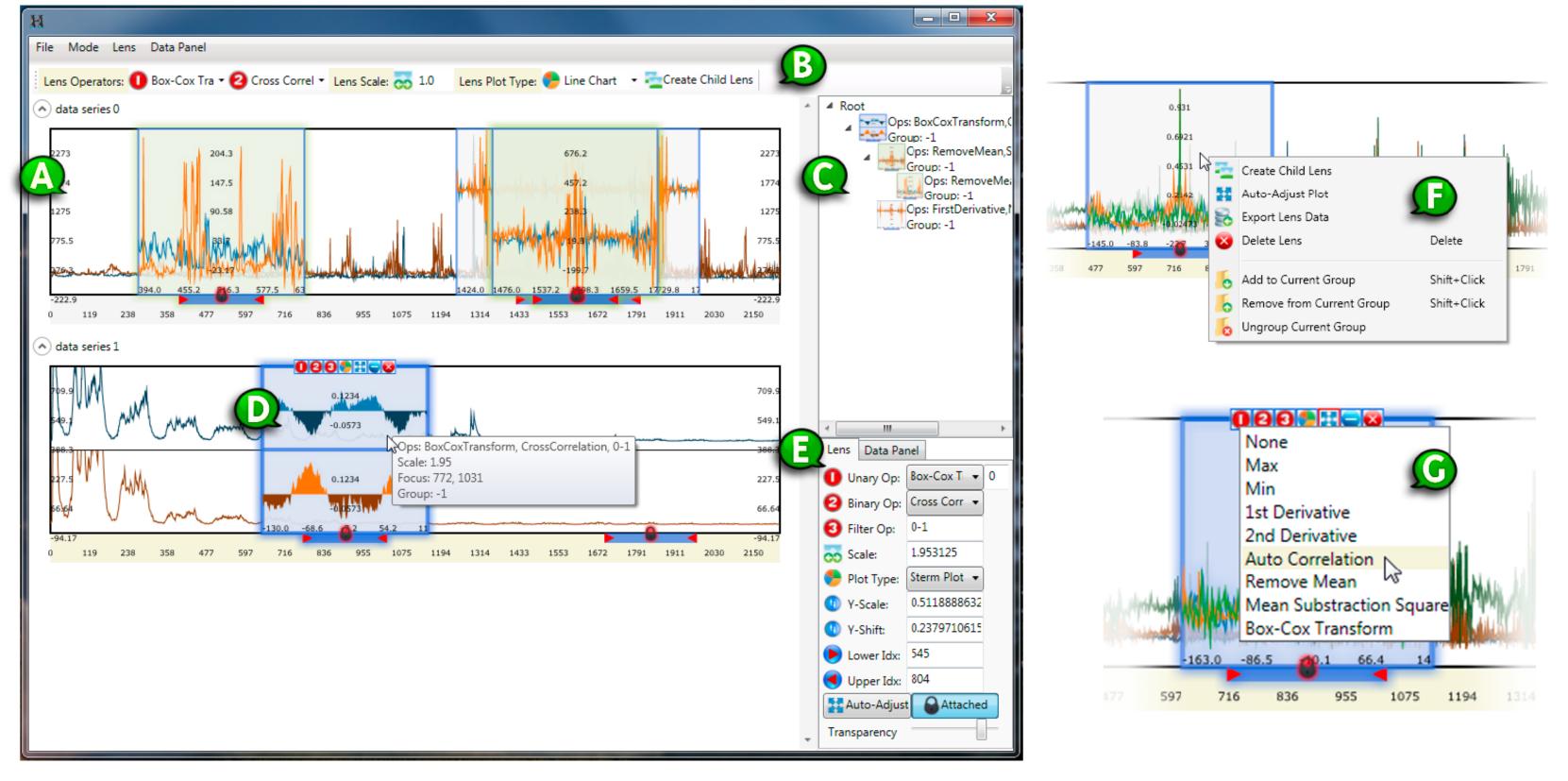
Research Approaches

Case 1:3D Approach (Not Recommended)

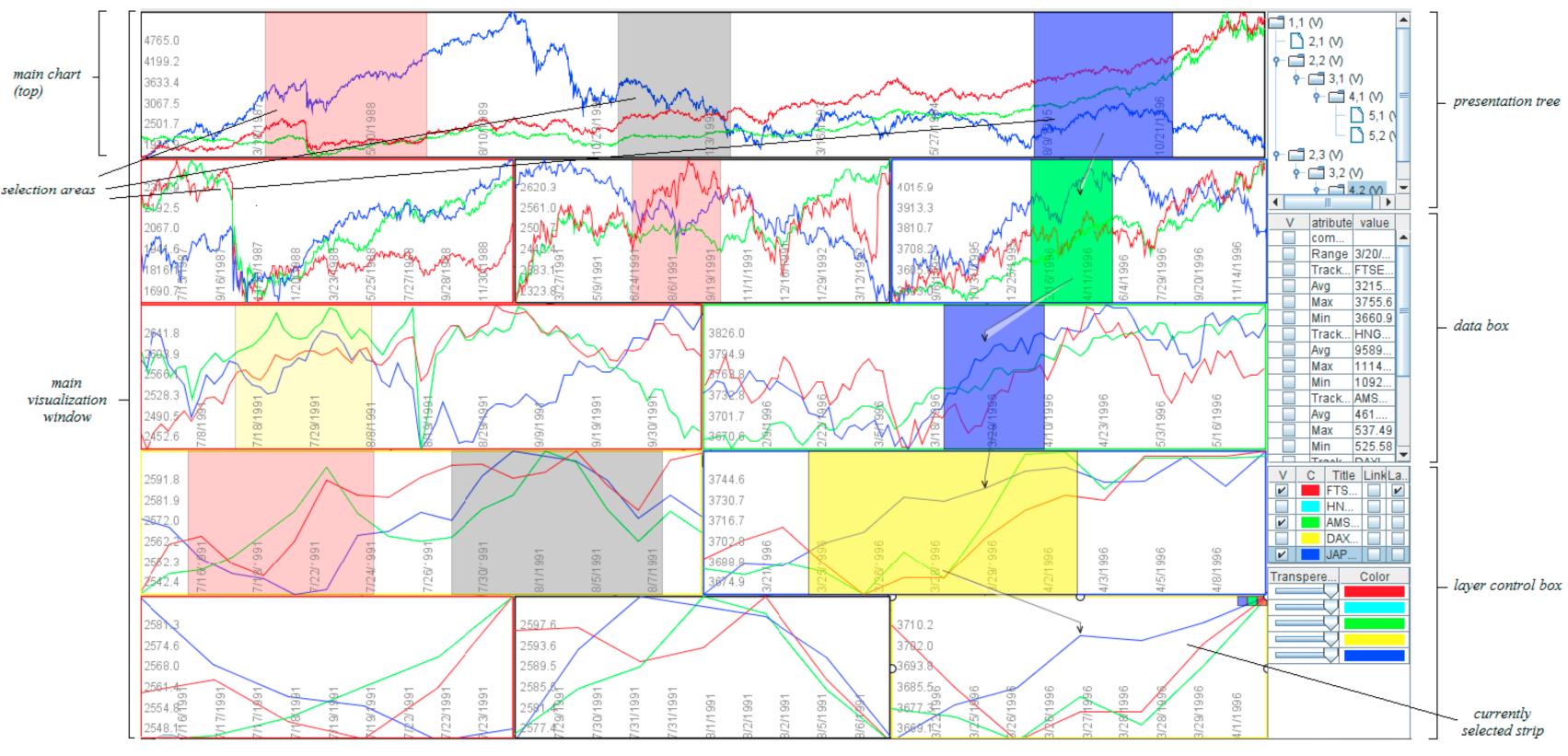

• extruded curves: detailed comparisons impossible


[Cluster and Calendar based Visualization of Time Series Data. van Wijk and van Selow, Proc. InfoVis 99.]

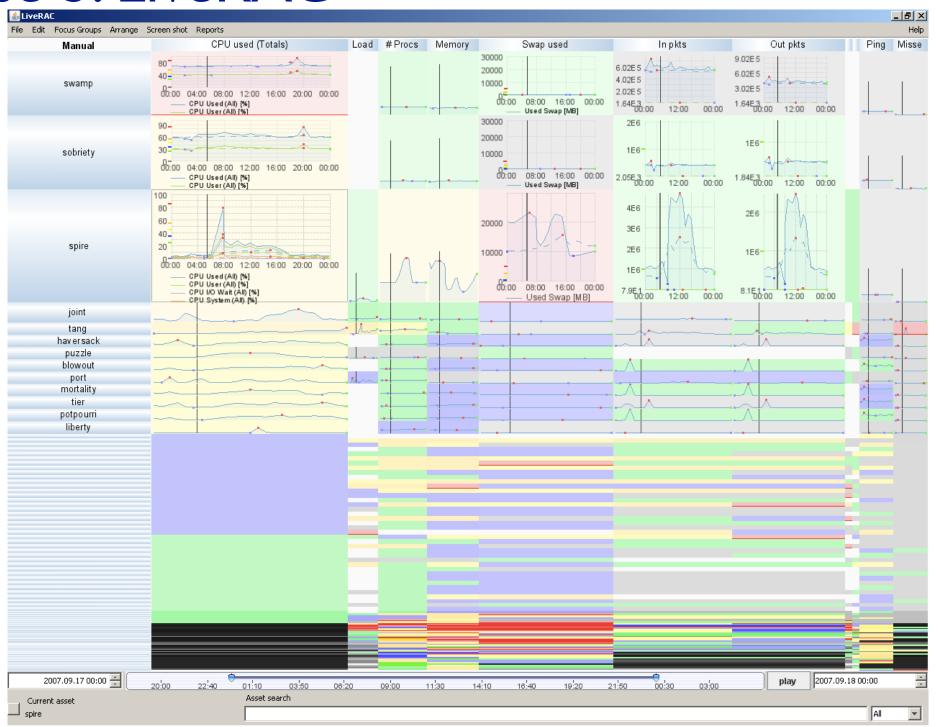
Case I: Cluster-Calendar Solution


- derived data: cluster hierarchy
- juxtapose multiple views: calendar, superimposed 2D curves

Case 2A: Ocupado



Ocupado: Visualizing Location-Based Counts Over Time Across Buildings. Oppermann and Munzner. Computer Graphics Forum (Proc. EuroVis), 2020.


https://youtu.be/dK0De4XPm5Y

Case 2C: Stack Zooming

[Stack Zooming for Multi-Focus Interaction in Time-Series Data Visualization. Javed and Elmqvist. Proc PacificVis 2010, p 33-40.]

Case 3: LiveRAC

[LiveRAC - Interactive Visual Exploration of System Management Time-Series Data. McLachlan, Munzner, Koutsofios, and North. Proc. Conf. on Human Factors in Computing Systems (CHI) 2008, pp 1483-1492.]