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1 INTRODUCTION

In recent years, instructors have increasingly adopted large language
models (LLMs) to assist in teaching, grading, and answering student
questions. Retrieval-Augmented Generation (RAG) systems such as
ChatEd [14] and Jill Watson [10] represent a promising step forward:
they allow educators to integrate their own course materials into LLMs,
improving answer accuracy and contextual alignment without requiring
advanced programming or machine-learning expertise. For under-
resourced teaching teams, these systems offer a scalable and cost-
effective way to provide round-the-clock learning support for students.

However, instructors often lack visibility into how these systems
operate internally. Most are non-experts in LLM architecture or prompt
design, and current interfaces provide little guidance on how retrieval
parameters or prompt changes affect the model’s behavior. As a re-
sult, instructors struggle to understand why a chatbot produces certain
answers—or why it fails to reference the correct course documents.
This lack of transparency limits instructors’ ability to diagnose errors,
adapt prompts, and iteratively improve their course bots. More specif-
ically, instructors struggle with the following problems when using
educational RAG chatbots:

Opaque retrieval logic. Instructors cannot easily see which doc-
uments influence an answer, nor how the model balances retrieved
content with general background knowledge.

Iteration blind spots. When instructors modify system prompts
(e.g., “be concise,” “simplify for beginners”), they must manually
query the chatbot to observe changes. This hinders rapid iterations and
improvements.

Limited explainability. Existing RAG interfaces show only raw doc-
ument lists or similarity scores, providing little sense of how retrieved
content influences the generated text. There are no intuitive mecha-
nisms for tracing document–sentence relationships or for visualizing
the impact of parameter adjustments.

To address these challenges, we propose a visual analytics suite
that makes RAG behavior interpretable and actionable for instructors.
Our goal is to transform opaque retrieval pipelines into transparent,
manipulable visual representations that support diagnosis, comparison,
and refinement of educational chatbots.

Our proposed tool adopts a two-tier design: an overview view sum-
marizing student-chatbot interactions across the course, and a detail
view that juxtaposes responses under different configurations (A/B
comparison). Instructors can identify low-quality answers, inspect how
document retrieval and generation differ between model settings, and
receive actionable nudges—such as suggesting a new course document
upload or adjusting top K values.

By combining RAG explainability with instructor-centered visual-
ization design, this project aims to bridge the gap between powerful
LLM infrastructure and the practical needs of educators.

1.1 Personal Expertise
Kevin has experiences in designing and evaluating AI systems for
education, with focus on Retrieval-Augmented Generation (RAG), in-
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structor tooling, and explainable human–AI interfaces. He was the
lead developer of the HelpMe platform [12], an AI-enhanced help-
seeking system deployed across multiple departments at the University
of British Columbia (UBC). HelpMe integrates human and AI assis-
tance into a unified interface, enabling instructors to customize RAG
configurations (e.g., chunking, top-k, and retrieval thresholds), main-
tain course-specific knowledge bases, and monitor student queries in
real time.

In promoting and maintaining these systems, Kevin has conducted
extensive interviews and informal evaluations with instructors, uncov-
ering recurring problems that motivate this visualization project:

• Instructors struggle to understand how the chatbot retrieves certain
materials, and which documents most influence its answers.

• Almost all lack intuition for adjusting RAG parameters (top K,
retrieval thresholds, or model choice).

• Instructors want to understand why some questions are answered
wrong (the false positive rate is essential)

Raymond has previous experience working with RAGs, having done
a course project involving evaluating the performance of different RAG
implementations for an information retrieval system. He has also
been a Teaching Assistant (TA) for various courses, and has had many
conversations with instructors about their opinions and dissatisfactions
on educational technology.

2 RELATED WORK

We consider related work in three domains: educational usages of Large
Language Models, educational AI assistants, and RAG visualization
systems.

2.1 Large Language Models (LLMs) and Education
Large Language Models (LLMs) have evolved rapidly, showing
promise across numerous domains [3, 4]. However, general-purpose
LLMs often lack the contextual awareness and pedagogical appropriate-
ness crucial for diverse classroom contexts. Agentic frameworks further
extend these capabilities through techniques like Chain-of-Thought
(CoT) prompting, enabling LLMs to handle multi-step tasks by making
their intermediate reasoning explicit [11, 16].

However, a fundamental challenge arises when applying LLMs in
education: their training data is broad but not course-specific. Most
LLMs rely on large-scale, publicly available datasets that may not
include domain-specific, up-to-date, or institutional knowledge [3, 8].
This limitation is particularly problematic in higher education, where
course specifics vary across institutions, instructors, and student needs
[5].

2.2 Educational AI Assistant
LLM and Retrieval-Augmented Generation (RAG) methods address
this gap by combining LLM capabilities with targeted knowledge re-
trieval [7], enhancing both precision and relevance of AI-generated
responses in education. The later iterations, especially in-prompt RAG
systems, increase contextual awareness of AI-generated responses and
adaptability as updating knowledge sources is much easier. A survey [6]
shows that lack of training data is the biggest problem in developing a
chatbot in education. Most AI assistant systems primarily rely on pre-
existing instructional content, such as course materials and structured
knowledge bases. Several LLM-based educational tools have been
developed to assist students and instructors in courses with minimal



overhead. Examples include Jill Watson [5], an AI-powered teach-
ing assistant designed to answer student queries in online courses,
and a chatbot-based system for assisting students with academic in-
quiries [14]. Prior work on integrating student help systems and AI
chatbots [2] shows promise, although there is a need to evaluate AI ef-
fectiveness in question answering and supporting continual content up-
dates. While effective for answering frequently asked questions, these
approaches miss a critical aspect of education: real-time, student-driven
interactions. Students often ask novel, context-dependent questions
that are not explicitly covered in course materials.

2.3 Visualization for RAG

New research on visual analytics for LLM ecosystems has begun to
address the transparency and interpretability challenges inherent in
retrieval-augmented generation (RAG) systems. While much of the
early work focuses on prompt engineering or plain LLMs, a small
but growing body of work explicitly targets the retrieval + generation
pipeline.

One of the earliest efforts in visualization for prompt-driven LLM
workflows is the work by Strobelt et al. [9] which presents a system for
interactive and visual prompt engineering. Their approach enables on-
the-fly parameter tuning, side-by-side outcome comparisons, and rapid
visual feedback, though it does not incorporate an explicit retrieval
component.

Extending into the retrieval space, Wang et al. [15] introduce
RAGVIZ, a visual system designed to help users diagnose how re-
trieved passages contribute to generated answers. Their interface visual-
izes token and document-level attentiveness, supports toggling context
inclusion, and assists debugging of hallucinations and retrieval failures.
More recently, Wang et al. [13] propose XGraphRAG, which leverages
graph-based representations of retrieval for specifically graph knowl-
edge retrievals. Arawjo et al. [1] present ChainForge, a visual toolkit
for prompt engineering and hypothesis testing with LLMs. Though
not explicitly RAG-oriented, ChainForge’s comparative small-multiple
views and experiment workflows suggest strong design patterns for
comparing variants (e.g., prompt v1 vs prompt v2), which we may
adapt and extend in our work.

Together, these systems illustrate several recurring design id-
ioms: side-by-side comparisons, provenance tracing, visual atten-
tion/coverage indicators, and multi-view pipelines. And that informs
our instructor-facing “cockpit” design. Our work differentiates itself
by focusing on: 1. course-specific corpora, 2. student-question histo-
ries, 3. and by embedding actionable nudges for instructors (such as
“Considering add new document about x; decrease top k to 3”). By and
large, we aim to bridge the gap between general RAG diagnostics tools
and the unique operational needs of instructors who deploy chatbots in
programming and theory-heavy courses.

3 DATA AND TASK ABSTRACTION

We focus on visualizing RAG chatbots in education in our specific
context, using the data and task abstraction.

3.1 Data Abstraction

On the highest level, our data consists of:

1. Course documents, uploaded by the instructor

2. Parameters within the RAG chatbot system

3. The set of student questions and chatbot answers, as well as
associated data with each answer (for example the documents
retrieved by the chatbot, and the evaluations on the answer given
by humans and LLMs)

The course document table consists of items with the following
attributes:

• Document name (categorical): the name of the document

• Document contents (categorical): the contents of the document,
stored as a string

• Document chunk start and end position (pair of quantitative at-
tributes): each document is split by the RAG system into smaller
chunks, which are retrieved by the RAG (instead of the full docu-
ments). We consider the (start, end) chunking positions as repre-
sentations of these chunks.

Note that each item in this documents table actually represents a docu-
ment chunk, not a document. This means that the document name and
contents are repeated several times across the items, but the document
chunk positions differ.

The chatbot configurations table consists of the following attributes:

• Base LLM (categorical): the base LLM used for the chatbot
(for example GPT4o, qwen, gemma, etc.), with approximately 5
options available to the instructor.

• Course documents (list of items from the documents table); the
documents uploaded by instructors to be retrieved by the RAG
system

• Top K (quantitative, options 3, 5, and 10): the number of top
document chunks retrieved at each query

• Retrieval threshold (quantitative, ranging from 0.01 to 0.99): the
minimum similarity score a document should have to be consid-
ered in the RAG ranking

• System prompt (categorical): the text used in every prompt provid-
ing (for example, "Please answer the following student question
using the provided documents.")

We plan to focus our visualization on the base LLM and course
documents, as we believe instructors will be more inclined to alter
those parameters, compared to the remaining three options.

The student chatbot history table contains the main data to be visual-
ized by our system. The attributes are as follows:

• Time of response (quantitative): the time the answer was gener-
ated by the chatbot.

• Student question text (categorical): the question text given by the
student.

• Chatbot-generated answer (categorical): the response generated
by the chatbot.

• Retrieved document chunks (list of items from the documents
table): The document chunks retrieved by the RAG system

– Associated with each retrieved document chunk is its docu-
ment similarity (quantitative, between 0.00 and 1.00). This
is a numerical value, as given by the RAG system, repre-
senting the semantic similarity of each document chunk
with the question. We can use this to order the retrieved
document chunks.

• Chatbot configurations (from the chatbot configurations table):
the chatbot settings that were used to generated the answer.

• Chatbot answer evaluation - human (quantitative, a non-negative
integer from 0 to the size of the class): students are given the
option to flag unhelpful or irrelevant chatbot responses, and the
system keeps track of the number of flags for each response.

• Chatbot answer evaluation - NLP. This consists of computational
evaluation of the chatbot-generated response to the student ques-
tion. We consider the following:

– LLM-as-a-judge (quantitative, between 0.00 and 1.00): a
score provided by a separate LLM on the helpfulness and
relevance of the answer.

– Averaged document similarity (quantitative, between 0.00
and 1.00): the average document similarities within the
retrieved document. This approximates the relevance of the
documents to the provided response.



• Sentence-level evaluations: for a more fine-grained computational
evaluation of the chatbot response, we consider a system in which
we (or the user) split the sentences within the response, and rank
the relevant document evidence for each sentence. This would
create a sub-table consisting of the following data:

– Sentence positions (pair of quantitative attributes): the posi-
tions of the sentences within the chatbot response, split by
start and end. A future version of this system will consist
of users selecting their own substring as the "sentence" of
choice; in that case, the user can select the start and end
positions themselves, rather than having it be pre-split.

– Document chunk ranking (ordinal): the rank order of re-
trieved document chunks by their relevance to each specific
sentence (e.g., 1st most relevant, 2nd most relevant, etc.)

– Per-sentence attribution score (quantitative, between 0.00
and 1.00): a score indicating the strength of evidence each
retrieved chunk provides for the sentence

Note that our tool is designed to work with datasets of different
cardinalities, ranging from 1 student question/chatbot answer to over
100. However, for the purposes of testing, we will work with a custom
dataset with approximately 25 student questions/chatbot answers.

3.2 Task abstraction
We have three main instructor goals in using our system.

Identify low-quality chatbot responses, i.e. those that were incor-
rect, unhelpful, or confusing to students.

Our system presents an overview for instructors showing the history
of student questions and chatbot responses. It highlights those that
were marked as low-quality, either from a high number of student flags,
or a low score given by the LLM-as-a-judge or averaged document
similarity scoring systems. This can be broken down as follows:

• What (target): All attributes of question-answer items, focusing
on derived quality scores (human flags, LLM-as-judge ratings,
document similarity)

• Why (high-level goal): Discover problematic patterns in chatbot
behavior

• How (action): Browse, filter, and sort question-answer pairs

• Search mode: Browse to scan the entire interaction history; locate
to find specific flagged instances

Diagnose why a chatbot provided a poor response, particularly
relating to course documents

Our system supports the fine-grained inspection of a specific chat-
bot response. It provides relevant data for each sentence within the
response, including: document chunks that were retrieved by the RAG
system and their similarity scores; sentence-level attribution showing
which document passages provide evidence for each generated sen-
tence; identification of potentially hallucinated content where sentences
lack adequate document support; and interactive exploration enabling
instructors to trace the provenance of specific claims back to their
source materials. This allows instructors to identify whether errors
stem from retrieval failures (relevant documents not retrieved), ranking
problems (correct documents retrieved but ranked too low), or genera-
tion issues (model hallucinating despite having correct source material).
More specifically, we break this down as follows:

• What (target): Links between question items and document
chunk items; attributes of individual sentences (presence/absence
of supporting evidence)

• Why (high-level goal): Explain why a specific response failed

• How (action): Identify relevant document chunks; compare re-
trieved vs. expected documents; relate sentences to source pas-
sages

• Dependencies: Depends on completing Task 1

Iteratively improve chatbot performance by updating model
parameters or documents and comparing results.

Given a student question, our system allows instructors to juxtapose
responses given by chatbots with different model configurations and/or
course documents, with the adjustable parameters listed in the config-
urations and documents table above. For example, they may upload
a new course document and tweak the top-K parameter, and run the
question on a chatbot with those updated configurations. They can
analyze to see if these changes led to a better response, using both
the response text as well as the scores to measure improvement. We
consider the following:

• What (target): Attributes of configuration items (model type,
top-K, documents); derived items (newly generated responses
under modified settings)

• Why (high-level goal): Produce improved chatbot configurations

• How (action): Compare responses generated under different
configurations; derive new parameter values; record which con-
figurations improve quality

• Dependencies: Depends on Tasks 1 and 2 (knowing which re-
sponses to improve and why they failed)

4 PROPOSED SOLUTION

The system’s general design is based on three primary visualization
displays, which break down into an overview page, a detail page for
juxataposing two runs, and a deep dive section to review one single run.
The overview page displays the full history of chatbot questions and
answers for overall evaluation and identification of poorly answered
questions; the detail page juxtaposes chatbot answers for different
model configurations, allowing instructors to find their preferred con-
figuration for these poorly answered questions.

4.1 Usage Scenario

To illustrate the system’s functionality, consider a UBC CPSC447
instructor using this chatbot in their course. They have deployed the
chatbot with default model configurations and uploaded all course
documents, including the course website (as an HTML file). One
month into the course, they receive complaints in office hours about the
chatbot providing incorrect answers regarding assignment requirements
and deadlines, as well as using overly harsh language.

4.2 Overview Page: Identifying Problem Areas

To investigate these issues, the instructor navigates to the overview
page (Figure 1). The overview page presents a comprehensive list of
student questions and chatbot answers, with each question-answer pair
associated with a complete set of chatbot configurations. For concise
display, only the base model configuration, top-K value, and retrieval
threshold are shown in the list view.

Currently Implemented:
• Question and answer display with associated metadata

• Configuration summary (base model, top-K, threshold) for each
entry

• Visual highlighting (red circles) for flagged responses

• Clickable rows to navigate to detailed analysis

• Basic filtering and sorting capabilities

Not Yet Implemented:
• NLP-based quality scoring integration

• Temporal filtering and trend visualization (maybe not within
scope)

• Advanced search and filtering by document type or question cate-
gory



Fig. 1: Overview page displaying the full history of student-chatbot inter-
actions. Red circles indicate questions flagged as incorrect or unhelpful
by students or automated evaluation metrics.

Each question-answer pair is associated with quality scores from
both human feedback and NLP algorithms. In the current demo, human
flags (student-reported issues) are fully functional, while the NLP scor-
ing component displays placeholder values and awaits integration with
actual metrics such as LLM-as-a-judge scores and averaged document
similarity.

The CPSC447 instructor can immediately identify questions where
the chatbot’s answers were marked as incorrect or unhelpful, enabling
rapid triage of problem areas.

4.3 Detail Page: Diagnosing and Comparing Configura-
tions

When the instructor selects a specific question from the overview,
they are taken to the detail view (Figure 2). This view reveals the
complete set of model configurations used to generate that chatbot
answer, including the retrieved document chunks and relevant text
passages.

Currently Implemented:
• Side-by-side comparison of two chatbot runs

• Interactive parameter adjustment (base model, top-K, system
prompt)

• Real-time re-generation of answers with modified configurations

• Diff visualization showing changes between responses

• Retrieved document display with similarity scores

Not Yet Implemented:
• Database/document set comparison (ability to add or remove

documents and visualize the impact)

• Sentence-level provenance tracking (linking each sentence in the
response to specific retrieved document passages)

• Attention or attribution visualization showing which parts of re-
trieved documents most influenced each sentence

• Quantitative diff metrics (e.g., semantic similarity between old
and new responses)

Fig. 2: Detail page juxtaposing two chatbot runs with different configura-
tions. The interface uses color coding, positioning, and sizing to highlight
differences in retrieved documents and generated responses.

In an example scenario, the instructor discovers that the chatbot
provided incorrect information because the retrieved document chunks
all reference an outdated assignment. The instructor had posted new
assignment instructions on the course website but failed to upload
the updated version to the RAG system. Additionally, the instructor
decides to switch the base model from GPT-4o to Qwen, having heard
that Qwen is a cool model and want to try it.

The instructor makes these changes through the detail view interface
and reruns the model on the same student question. The visualiza-
tion juxtaposes the old and new configurations, using color coding,
positioning, and visual emphasis to highlight differences in retrieved
documents, similarity scores, and generated text. Once the new run
completes, the instructor can verify that the updated chatbot outputs
correct information and retrieves the appropriate documents.

4.4 Deep Dive Page: Fine-Grained Analysis
For more granular inspection, the system provides a deep dive view
(Figure 3) that focuses on a single chatbot run. This view breaks
down the response at the sentence/document level and displays detailed
provenance information.

Currently Implemented:
• Display of the full question and answer

• Configuration parameters panel

• Retrieved document list with similarity scores

• Basic document chunk visualization
Not Yet Implemented:
• Interactive selection of text spans to view relevant document

passages

• Document phrase matching showing which specific passages
influenced each sentence

• Attribution scores indicating the strength of evidence for each
sentence



Fig. 3: Deep dive view showing sentence-level analysis of a single
chatbot response, including document attribution and similarity metrics.

• Hallucination detection highlighting sentences with weak or no
document support

• Coverage visualization showing what percentage of the response
is grounded in retrieved documents

This deep dive capability will allow instructors to understand not
just whether a response is good or bad, and identifying which sentences
lack adequate document support, which documents are most influential,
and where the model may be hallucinating or over-generalizing.

4.5 System Architecture and Implementation

The tool is being developed as a full-stack web application. The fron-
tend uses React with Next.js framework, D3.js for custom visualiza-
tions, and TypeScript for type safety. The backend leverages Node.js
with PostgreSQL for data persistence, and integrates with OpenAI and
other LLM APIs for real-time answer generation.

Currently Implemented:
• Full Next.js application framework with API routes

• PostgreSQL database with Prisma ORM for question, answer,
and configuration storage

• RAG pipeline integration supporting multiple LLM providers

• Basic visualization components for overview and comparison
views

• Real-time answer generation with configurable parameters

Technical Gaps:
• Automated NLP evaluation pipeline (LLM-as-a-judge, document

similarity metrics)

• Sentence-level attribution and document matching algorithms

• More visualization encodings

Fig. 4: Milestone 1

Fig. 5: Milestone 2

5 MILESTONES AND WORK ALLOCATION

The major milestones are as follows:
By the end of October, we aim to have completed a basic, crude

prototype of the system. Fig. 4 shows the list of tasks involved.
By late November (in particular the update document deadline), we

aim to refine the system, implementing and iterating on the specific
visual encodings; the specific tasks are shown in Fig. 5.

By the start of December, we aim to have a final design that largely
fulfills the goals outlined in this proposal, as outlined in Fig. 6.

6 DISCUSSION, FUTURE WORK, AND CONCLUSION
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