Information Visualization
Manipulate Interactive, Facet into Multiple, Scalable Insets
Ex: Complexity Families
Tamara Munzner
Department of Computer Science
University of British Columbia
Week 9, 2 Nov 2022
https://www.cs.ubc.ca/~tmm/courses/547-22

- Plan for today
 - small group exercises
 - Complexity Families
 - backlog reading Q&A
 - WA/NV
 - this week reading Q&A
 - chap Manipulate Interactive, Multiple Views. paper: Scalable Insets
 - reminder: post-class office hours
 - if you want discussion of your project proposal feedback
 - especially if it told you to talk with me
 - all of you should have gotten written comments by email

- Upcoming
 - next week (W10): reading week, no class, no readings, no async discussion
 - work on projects!
 - week after (W11)
 - light: async reading/discussion
 - 1 reading: Ch 13. Redux
 - due Tue 3pm: project updates
 - in-class project peer reviews
 - each team will be reached with one another, will post on Piazza before Tue 3pm
 - read other team’s written update before class
 - review: critique B; than A critique A
 - review discussion/thoughts in IRC
 - in-class mini-lecture & Q/A catchup

- How to handle complexity: 1 previous strategy
 - how: data-driven reordering
 - why: find extreme values, trends

- Idiom: Change parameters
 - widgets and controls
 - sliders, buttons, radio buttons, checkboxes, dropdowns/toggle buttons
 - pros
 - clear affordances, self-documenting (with labels)
 - cons
 - uses screen space
 - design choices
 - separated vs interleaved
 - controls vs canvas

- Idiom: Change order/arrangement
 - what: simple table
 - how: data-driven reordering by selecting column
 - why: find extreme values, trends

- Idiom: Reorder
 - what: table with many attributes
 - why: find correlations between attributes

- Idiom: Change alignment
 - stacked bars
 - easy to compare
 - first segment
 - total bar
 - align to different segments
 - supports flexible comparison

- Idiom: Re-encode
 - derive new data to show within view
 - change view over time
 - facet across multiple views

- How to handle complexity: 1 previous strategy + 2 more
 - device: Change order/arrangement
 - how: data-driven reordering by selecting column
 - why: find extreme values, trends
 - device: Change parameters
 - widgets and controls
 - sliders, buttons, radio buttons, checkboxes, dropdowns/toggle buttons
 - pros
 - clear affordances, self-documenting (with labels)
 - cons
 - uses screen space
 - design choices
 - separated vs interleaved
 - controls vs canvas

- Upcoming
 - week after that (W12)
 - async: last week of reading / discussion
 - Ch 14. Embedded Focus+Context

- Reminder: post-class office hours
- This week reading Q&A
- Async: no readings/discussion
- If you want discussion of your project proposal feedback, especially if it told you to talk with me.
- All of you should have gotten written comments by email.

- Idiom: Change order/arrangement
 - what: simple table
 - how: data-driven reordering
 - why: find extreme values, trends

- Idiom: Reorder
 - what: table with many attributes
 - why: find correlations between attributes

- Idiom: Change alignment
 - stacked bars
 - easy to compare
 - first segment
 - total bar
 - align to different segments
 - supports flexible comparison

- Idiom: Re-encode
 - derive new data to show within view
 - change view over time
 - facet across multiple views
Idiom: Animated transitions - visual encoding change
• smooth transition from one state to another
 – alternative to jump cuts, supports item tracking
 – best case for animation
 – staging to reduce cognitive load

• animated transition – network drilldown/rollup

Idiom: Navigate: Changing viewpoint/visibility
• how: navigate page by scrolling (panning down)
 – familiar & intuitive, from standard web browsing
 – linear (up and down) vs possible overload of click-based interface choices
 – score: full-screen mode may look awkwardness
 – scrolling for direct access
 – unexpected behaviour
 – continuous control for discrete steps

Idiom: Animated transition - tree detail
• animated transition
 – network drilldown/rollup

Idiom: Animated transition + constrained navigation
• example: geographic map
 – simple zoom, only viewpoint changes, shapes preserved

Interaction technology
• what do you design for?
 – mouse & keyboard on desktop?
 – large screens, hover, multiple dots
 – touch interaction on mobile?
 – small screen, no hover, just tap
 – gestures from videos / sensors?
 – ergonomic reality vs movie bombastic
 – eye tracking?

Selection
• selection: basic operation for most interaction
 – how many selection types?
 – interaction modality:
 – click/tap (heavyweight)
 – hover (lightweight)
 – proximity beyond click/tap (touching vs nearby vs distant
 – application semantics
 – adding vs selection set vs replacing selection

Manipulate

Highlighting
• highlight change visual encoding for selection targets
 – design choices:
 – feedback closely tied to but separable from selection
 – design choices: typical visual channels
 – change interface color
 – hot/cold existing color coding
 – add outline mark
 – change size (as increase outline mark linewidth)
 – change shape (ex: from solid to dashed line for link mark)
 – unusual channels: motion
 – motion usually avoid for single view
 – with multiple views, could part draw attention to other views

Interaction benefits
• interaction pros
 – major advantage of computer-based vs paper-based visualization
 – empirical evidence that animated transitions help people stay oriented

Interaction limitations
• interaction has a time cost
 – sometimes minor, sometimes significant
 – degenerates to human-powered search in worst case
 – remembering previous state imposes cognitive load
 – controls may take screen real estate
 – or invisible functionality may be difficult to discover (lack of affordances)
 – users may not interact as planned by designer
 – NYTimes logs show ~90% don’t interact beyond scrollytelling

Interaction technology
• what do you design for?
 – mouse & keyboard on desktop?
 – large screens, hover, multiple dots
 – touch interaction on mobile?
 – small screen, no hover, just tap
 – gestures from videos / sensors?
 – ergonomic reality vs movie bombastic
 – eye tracking?

Interaction technology
• what do you design for?
 – mouse & keyboard on desktop?
 – large screens, hover, multiple dots
 – touch interaction on mobile?
 – small screen, no hover, just tap
 – gestures from videos / sensors?
 – ergonomic reality vs movie bombastic
 – eye tracking?

Interaction technology
• what do you design for?
 – mouse & keyboard on desktop?
 – large screens, hover, multiple dots
 – touch interaction on mobile?
 – small screen, no hover, just tap
 – gestures from videos / sensors?
 – ergonomic reality vs movie bombastic
 – eye tracking?

Interaction technology
• what do you design for?
 – mouse & keyboard on desktop?
 – large screens, hover, multiple dots
 – touch interaction on mobile?
 – small screen, no hover, just tap
 – gestures from videos / sensors?
 – ergonomic reality vs movie bombastic
 – eye tracking?

Interaction technology
• what do you design for?
 – mouse & keyboard on desktop?
 – large screens, hover, multiple dots
 – touch interaction on mobile?
 – small screen, no hover, just tap
 – gestures from videos / sensors?
 – ergonomic reality vs movie bombastic
 – eye tracking?

Interaction technology
• what do you design for?
 – mouse & keyboard on desktop?
 – large screens, hover, multiple dots
 – touch interaction on mobile?
 – small screen, no hover, just tap
 – gestures from videos / sensors?
 – ergonomic reality vs movie bombastic
 – eye tracking?
Visualization Analysis & Design

Interactive Views (Ch 11/12) II

Tamara Munzner
Department of Computer Science
University of British Columbia

Questions?

How to handle complexity: 1 previous strategy + 2 more

• Derive
• Change
• Justuxtapose
• Select
• Partition
• Navigate
• Juxtapose and coordinate views
 - Share Encoding: Same/Different
 - Linked highlighting
 - Share Data: All/Subset/None
 - Share Navigation

Idiom: Juxtapose and coordinate views
 • encoding: same or different
 • data: subset shared
 • navigation: shared
 • other differences
 - encoding: same or different
 - data: subset shared
 - navigation: shared
 - other differences

Interactive small multiples
 • linked highlighting: analogous item/attribute across views
 — same year highlighted across all charts if hover over any chart

Example: Combining many interaction idioms

System: Buckets
 • multisets
 • multidirectional linked highlighting of small multiples
 • tooltips

Juxtapose views: tradeoffs
 • juxtapose costs
 • display area
 • 2 views side by side, each has only half the area of one view

Linked views: Directionality
 • unidirectional or bidirectional linking
 — bidirectional almost always better!

Visualization Analysis & Design
Interactive Views (Ch 11/12) II
Tamara Munzner
Department of Computer Science
University of British Columbia

Questions?

How to handle complexity: 1 previous strategy + 2 more

• Derive
• Change
• Justuxtapose
• Select
• Partition
• Navigate
• Juxtapose and coordinate views
 - Share Encoding: Same/Different
 - Linked highlighting
 - Share Data: All/Subset/None
 - Share Navigation

Idiom: Juxtapose and coordinate views
 • encoding: same or different
 • data: subset shared
 • navigation: shared
 • other differences
 — encoding: same or different
 — data: subset shared
 — navigation: shared

Interactive small multiples
 • linked highlighting: analogous item/attribute across views
 — same year highlighted across all charts if hover over any chart

Example: Combining many interaction idioms

System: Buckets
 • multisets
 • multidirectional linked highlighting of small multiples
 • tooltips

Juxtapose views: tradeoffs
 • juxtapose costs
 • display area
 • 2 views side by side, each has only half the area of one view

Linked views: Directionality
 • unidirectional or bidirectional linking
 — bidirectional almost always better!
View coordination: Design choices

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td></td>
</tr>
<tr>
<td>Subset</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Idiom: Trellis plots

- few layers, more lines
- up to a dozen lines
- but not hundreds
- superimpose within same frame: empirical study
- same size: all multiples, vs single superimposed
- superimposed: local tasks
- juxtaposed: global tasks, esp. for many charts

System: Reorderable lists

- set views
- easy linking
- suitable when linked to other views
- many views in ask vs two outputs?
- open research question

System: Improvise

- juxtapose
- partition
- superimpose

Facet

- Juxtapose
- Partition
- Superimpose

Static visual layering

- foreground/road
- hue, size distinguishing man from mirror
- high luminance contrast from background
- background/layer: regions
- deinterlaced colors for water, parks, land areas
- user can selectively focus attention

Dynamic visual layering

- interactive, based on selection
- one-hop neighbour highlighting
 - click (heavyweight)
 - hover (fast)

Superimposing limits (static)

- superimpose: within same frame
 - color code by year
 - partitioning
 - split by state, rows are barby varieties
 - main-effects ordering
 - derive value of median for group
 - order rows within view by variety median
 - order views themselves by state median

Juxtapose vs animate

- animate: hard to follow if many scattered changes or many frames
- easy special case: animated transitions
- juxtapose: easier to compare across small multiples—different conditions (color, same gene (lens))

Partition into views

- how to divide data between views
- split into region by strata
- encodes association between items

Partitioning: Recursive subdivision

- split by neighbourhood
 - by type
 - flat, terrains, semi-detached, detached
 - then time
 - months in calendars
 - color by price
 - neighbourhood patterns
 - where it is expensive
 - how you pay much more for detached type

Partitioning: Grouped vs small-multiple bars

- small multiples: bar charts
 - split by age into regions
 - one chart per region
 - compare easy within, hard across states

Superimposing layers

- layer: set of objects spread out over region
 - each set is visually distinguishable
 - across: whole view
 - design choices
 - how many layers, how to distinguish?
 - merge with different, non-overlapping channels
 - two layers achievable, three with careful design
 - small static set, or dynamic from many possible?

System: Hive

- flat, semi, term, det

Configuring Hierarchical Layouts to Address Research Questions

- Slingsby, Dykes, and Wood.
- Get it right in black and white.
- Trellis plots
 - superimpose within same frame
 - color code by year
 - partitioning
 - split by state, rows are barby varieties
 - main-effects ordering
 - derive value of median for group
 - order rows within view by variety median
 - order views themselves by state median

- Reorderable lists
 - set views
 - easy linking
 - suitable when linked to other views
 - many views in ask vs two outputs?
 - open research question

- Dynamic visual layering
 - interactive, based on selection
 - one-hop neighbour highlighting
 - click (heavyweight)
 - hover (fast)

- Static visual layering
 - foreground/road
 - hue, size distinguishing man from mirror
 - high luminance contrast from background
 - background/layer: regions
 - deinterlaced colors for water, parks, land areas
 - user can selectively focus attention

- Superimposing limits (static)
 - superimpose: within same frame
 - color code by year
 - partitioning
 - split by state, rows are barby varieties
 - main-effects ordering
 - derive value of median for group
 - order rows within view by variety median
 - order views themselves by state median

Example of Trellis Display

- Building High-Dimensional Visualization: Perumal

Trellis plots

- superimpose within same frame
 - color code by year
 - partitioning
 - split by state, rows are barby varieties
 - main-effects ordering
 - derive value of median for group
 - order rows within view by variety median
 - order views themselves by state median

Trellis Display

- System: Hive
 - flat, semi, term, det
 - Superimposing layers
 - layer: set of objects spread out over region
 - each set is visually distinguishable
 - across: whole view
 - design choices
 - how many layers, how to distinguish?
 - merge with different, non-overlapping channels
 - two layers achievable, three with careful design
 - small static set, or dynamic from many possible?

Dynamic visual layering

- interactive, based on selection
 - one-hop neighbour highlighting
 - click (heavyweight)
 - hover (fast)