Interaction between channels: Not fully separable

- color channel interactions
 - can heavily affect each other
 - small region need high saturation
 - large region need low saturation

- saturation & luminance:
 - not separable from each other
 - also not separable from transparency

Categorical color: limited number of discriminable bins

- human perception built on relative comparisons
 - great if color contiguous
 - surprisingly bad for absolute comparisons

- noncontiguous small regions of color:
 - fewer bins than you want
 - rule of thumbs 6-12 bins, including background and highlights

Ordered color: Rainbow is poor default

- problems
 - perceptually unordered
 - perceptually nonlinear

- benefits
 - fine-grained structure visible and nameable

Viridis / Magma: sequential colormaps

- monotonically increasing luminance, perceptually uniform
- colorful, colorblind-safe
- R, python, D3

Interaction between channels: Not fully separable

- color channel interactions
 - can heavily affects each other
 - small region need high saturation
 - large region need low saturation

- saturation & luminance:
 - not separable from each other
 - also not separable from transparency
Diverging

• perceptual processing before optic nerve
 – one achromatic luminance channel ... information

Opponent color and color deficiency

- perceptual processing before optic nerve
 - one achromatic luminance channel • use neutral color for midpoint • white, yellow, grey • use saturated colors for endpoints
 - sequential • ramp luminance or saturation • if multi-hue, good to order by luminance

Saturated colors for endpoints

• use saturated colors for endpoints

Use neutral color for midpoint

• use neutral color for midpoint

Diverging or sequential or cyclic?

• divergence • useful when data has meaningful "midpoints" • ramp luminance or saturation • if multi-hue, good to order by luminance

Luminance values

- need luminance for edge detection
 - fine-grained detail only visible through luminance contrast

Opponent color and color deficiency

- perceptual processing before optic nerve

Categorical

- one achromatic luminance channel

Sequential

- use neutral color for midpoint

Binary

- binary in one of the directions

Categorical can show identity

- hue when color

Opponent color and color deficiency

• perceptual processing before optic nerve

- one achromatic luminance channel

Categorical color

- ordered can show magnitude

Sequential color

- luminance how bright (B)

Categorical color

- saturation how colourful

Binary

- binary is one of the directions

Categorical can show identity

- hue when color

Luminance information

- need luminance for edge detection

Color Deficiency

- colorblind safe?

Luminance

- need luminance for edge detection

- fine-grained detail only visible through luminance contrast

- legend text requires luminance contrast!

Opponent color and color deficiency

- perceptual processing before optic nerve

Continuous

- one achromatic luminance channel

Categorical

- one achromatic luminance channel

Sequential

- edge detection through luminance contrast

- 2 chroma channels

Segmenting

- red-green (a*) & yellow-blue axis (b*)

Color palettes: univariate

- categorical

Color palettes: bivariate

- bivariate can be very difficult to interpret

- when multiple levels in each direction

Designing for color deficiency

- Check with simulator

Deuteranope simulation

- green-weak

Protanope

- red-weak

Tritanope

- blue-weak

Color encoding

- perceptually linear?

- continuous

Color palette design considerations

- univariate

Color palettes: multivariate

- categorical

Color palettes: continuous

- sequential

Color palettes: cyclic

- segmented or continuous

Color palettes: sequential

- single-hue or two-hue or multi-hue

Categorical

- perceptually linear!

encoded by hue alone

- redundancy encode

- Vary luminance

- Vary shape
Many color spaces
• Luminance (L*), hue (H), saturation (S)
– good for encoding
– but not standard graphics/tools colorspace
• RGB: good for display hardware

Perceptual color space: L*a*b*
• perceptual processing before optic nerve
 – one achromatic luminance channel (L*)
 – edge detection through luminance contrast
 – 2 chroma channels
 – red-green (a*) & yellow-blue axis (b*)
• CIE LAB
 – perceptually uniform
 – good for interpolating

HSL/HSV
• somewhat better for encoding
 – hue/saturation wheel intuitive
 – saturation
 – in HSL (double-cone) desaturated = white
 – in HLS (single-cone) desaturated = grey
HSL/HSV
• HSL/HSV: somewhat better for encoding
 • hue/saturation wheel intuitive
• saturation
 • in HSV (single-cone) desaturated = white
 • in HSL (double-cone) desaturated = grey
• luminance vs saturation
 • channels not very separable
 • typically not crucial to distinguish between these with encoding/decoding
 • key point is hue vs luminance/saturation

Many color spaces
• Luminance (L*), hue (H), saturation (S)
 • good for encoding
 • but not standard graphics/tools colorspace
• RGB: good for display hardware
 • poor for encoding & interpolation
• CIE LAB (L*a*b*): good for interpolation
 • hard to interpret, poor for encoding
 • HSL/HSV somewhat better for encoding
 • hue/saturation wheel intuitive
 • beware: only pseudo-perceptual!
 • lightness (L) or value (V) ≠ luminance (L*)

Interaction with the background
• marks with high luminance on a background with low luminance
• marks with medium luminance on a background with high luminance
• change luminance of marks depending on background

Color/Lightness constancy: Illumination conditions

Bezold Effect: Outlines matter

Contrast with background

Color naming
Color naming
- nameability affects
 - communication
 - memorability
- can integrate into color models
 - in addition to perceptual considerations

Color is just part of vision system
- Does not help perceive
 - Position
 - Shape
 - Motion
 - ...

Map Other Channels

Spectral sensitivity to luminance

Angle / tilt / orientation channel
- different mappings depending on range used
 - high exact horizontal, vertical, diagonal (0, 45, 90 degrees)
 - lower: other orientations (e.g., 37 vs. 38 degrees)

Map other channels
- size
 - aligned length best
 - length accurate
 - 2D area ok
 - 3D volume poor
- shape
 - complex combination of lower-level primitives
 - many bins
- motion
 - highly separable against static
 - great for highlighting (binary)
 - use with care to avoid irritation

Map other channels
- size
 - aligned length best
 - length accurate
 - 2D area ok
 - 3D volume poor
- shape
 - complex combination of lower-level primitives
 - many bins
- motion
 - Direction, Rate, Frequency