Plan for today
- 15 min: pitches details & project resources
- 45 min: Marks & Channels
 - mini-lecture
 - examples & discussion
 - further Q&A
- 15 min: Rules of Thumb, Design Study Methodology
 - further Q&A
 - (break: 10 min)
- 75 min small groups exercise: Decoding
 - 45 min breakout groups
 - 30 min: reportbacks

Next week
- to read & discuss (async, before next class)
 - VAD book, Ch. 7: Arrange Tables
 - paper: LineUp [technique]
 - paper: Partitioning Bar Mertices [technique]
- sync class: project pitches!
 - 2 min each
 - if already have full or partial team, can combine your times together
 - up to you prerecord video OR present live, need slides either way
 - due on Canvas by 1pm (Wed Sep 21)
 - prerecorded, video slides and slides
 - video creation tips/resources https://www.visualisingdata.com/resources/ (near-endline Q&A) / discussion through dedicated Piazza thread

Project resources: Datasets
- • many choices!
 - Data Is Plural: weekly newsletter of interesting/quirky datasets by Jeremy Singer-Vine
 - brings weekly loss
 - single source spreadsheet with everything
 - VASS Challenge: Learning Logs dataset
 - tools: you're free to pick platform
 - • tools: you're free to pick platform
 - • tools: you're free to pick platform
 - • many, many smaller building blocks
 - many more on Resources page
 - https://www.cs.ubc.ca/~tmm/courses/547-22/tools/

Project resources: Tools
- • Tools: you’re free to pick platform
 - align with current strengths? learn something new?
 - overview of the “big 4”: D3, R/tidyverse, Python, Tableau
 - consider covering your own strengths & goals in your pitch
 - smaller tools: also free to use
 - pitch details & project resources
 - 45 min: Marks & Channels
 - mini-lecture
 - examples & discussion
 - further Q&A
 - (break: 10 min)
 - 75 min small groups exercise: Decoding
 - 45 min breakout groups
 - 30 min: reportbacks

Project resources: Marks and Channels
- • marks
 - basic geometric elements
 - channels
 - control appearance of marks
 - https://www.cs.ubc.ca/~tmm/courses/547-22/tools/

Reduced encoding
- multiple channels
 - sends stronger message
 - but uses up channels

Marks: Constrained vs encodable
- math view: geometric primitives have dimensions
 - Points
 - Lines
 - Areas
 - 0D
 - 1D
 - 2D

Constraint view: mark type constrains what else can be encoded
- pattern: 0 constraints on size, can encode more attributes w/ size & shape
- lines: 1 constraint on size (length), can still size code other way (width)
- areas: 2 constraints on size (length/width), cannot size code or shape code
- quick check: can you size-code another attribute, or is size/shape in use?

Grouping
- marks
 - containment
 - connection

Marks: Attributes
- proximity
 - same spatial region
- similarity
 - same values across other categorical channels

Quiz: Name those marks & channels
- A: Shooting Media Coverage
- B: Tax Rates
- http://www.cs.ubc.ca/group/infovis/resources.shtml#data-repos
Idioms: pie chart, coxcomb chart

- **pie chart**
 - interlocking area marks with angle channel: 2D area varies
 - what type of mark?
 - line?
 - no, not length coded
 - point mark with rectangular shape?
 - yes!
 - area?
 - no, area/shape does not convey meaning

- **coxcomb chart**
 - invented by Florence Nightingale:
 - Diagram of the Causes of Mortality in the Army in the East
 - nonuniform width as length increases
 - 1D length varies
 - 2D area varies
 - 1D length: uniform width, so area is linear with line mark length
 - both radial & rectilinear cases

Plan for today

- **15 min pitches details & project resources**
- **45 min: Marks & Channels**
 - mini-lecture
 - examples & discussion
 - further Q&A
- **15 min: Rules of Thumb, DSM Methodology**
- further DSM
- **break: 10 min**
- **75 min small groups exercise: Decoding**
 - 45 min breakout groups
 - 30 min reportbacks
Visual encoding
• analyze idiom structure as combination of marks and channels

Marks for items
• basic geometric elements
 - Points
 - Lines
 - Interlocking Areas

Marks for links
• Containment
• Connection

Definitions: Marks and channels
• marks
 - geometric primitives
 - marks: represent items or links
 - channels: change appearance of marks based on attributes
 - points: encode more attributes w/ size & shape
 - lines: encode more attributes w/ size (length), can still size code other way (width)

Definitions: Marks and channels
• channels
 - control appearance of marks
 - visual variables
 - retinal channels
 - visual dimensions
 - perceptual system can be conveyed to human

Containment can be nested

[Untangling Euler Diagrams, Riche and Dwyer, 2010]

Marks as constraints
• math view: geometric primitives have dimensions
 - Points
 - Lines
 - Interlocking Areas

Marks as constraints
• constraint view: mark type constrains what else can be encoded
 - points: 0 constraints on size, can encode more attributes w/ size & shape
 - lines: 1 constraint on size (length), can still size code other way (width)
 - interlocking areas: 2 constraints on size (length/width), cannot size or shape code

Redundant encoding
• multiple channels
 - sends stronger message
 - but uses up channels

Length, Position, and Luminance

3D mark: volume, rarely used

Mark properties differ
• properties change appearance of marks
• type & amount of information that can be conveyed to human

Definitions: Marks and channels
• marks
 - geometric primitives
• channels
 - control appearance of marks
 - visual variables
 - retinal channels
 - visual dimensions
Separability vs. Integrality
- constraint: mark type constraints what else can be encoded
 - points: 0 constraints on size, can encode more attributes w/ size & shape
 - lines: 1 constraint on size (length), can still size code other way (width)
- interlocking areas: 2 constraints on size (length/width), cannot size or shape code
- quick check: can you size-code another attribute
 - or is size/shape in use?

Scope of analysis
- simplifying assumptions: one mark per item, single view
- later on
 - multiple views
 - multiple marks in a region (glyph)
 - some items not represented by marks (aggregation and filtering)

Channels: Rankings
- Expressiveness: match channel type to data type
- Effectiveness: some channels are better than others

Popout
- find the red dot
 - how long does it take?

Discriminability: How many usable steps?
- must be sufficient for number of attribute levels to show
- line: bandwidth

Channels: Rankings
- Position on common scale
 - spatial region
 - color hue
 - color saturation
- Area (3D position)
- Depth (3D position)
- Color luminance
- Color saturation
- Size
- Shape
- Volume (3D size)

Attributes
- Categorical Attributes
 - Identity
 - Shape
- Spatial Attributes
 - Spatial region
 - Position on unaligned scale
- Identity for categorical
- Cyclic
- Deriving
- Quantitative
- Sequential
- Diverging

Accuracy: Fundamental theory
- length is accurate: linear
- others magnified or compressed
 - -expansion characteristics

Accuracy: Vis experiments
- Contrast to background
- Contrast to edges

When to use which channel?
- Expressiveness
 - match channel type to data type
- Effectiveness
 - some channels are better than others

Channels: Rankings
- Position on common scale
 - spatial region
 - color hue
 - color saturation
- Area (3D position)
- Depth (3D position)
- Color luminance
- Color saturation
- Size
- Shape
- Volume (3D size)
Relative luminance judgements
• perception of luminance is contextual based on contrast with surroundings

Relative vs. absolute judgements
• perceptual system mostly operates with relative judgements, not absolute
– that's why accuracy increases with common frame/scale and alignment

Factors affecting accuracy
• alignment
• distractors
• distance
• common scale

Relative color judgements
• color constancy across broad range of illumination conditions
Rules of Thumb

- **No unjustified 3D**: Danger of depth
 - we don't really live in 3D: we see in 2.65D
 - acquire more info on image plane quickly from eye movements
 - acquire more info for depth slower, from head/body motion

- **Occlusion hides information**
 - occlusion
 - interaction can resolve, but at cost of time and cognitive load

- **Perspective distortion loses information**
 - perspective distortion
 - indifference with all size channel encodings
 - power of the plane is lost!

- **Unjustified 3D all too common, in the news and elsewhere**
 - Unjustified 3D examples:
 - Time-series data: extruded curves: detailed comparisons impossible
 - Economic growth curve: constrained navigation steps through carefully designed viewpoints
 - Economic growth curve: 3D legitimate for true 3D spatial data

Depth vs power of the plane

- planar spatial position: high-ranked channel!
- depth: not ranked!

3D vs 2D bar charts

- 3D bars very difficult to justify!
 - perspective distortion
 - occlusion
 - facing into 2D almost always better choice

Tilted text isn’t legible

- text legibility
 - far worse when tilted from image plane
 - further reading

Justified 3D: Economic growth curve

- constrained navigation steps through carefully designed viewpoints
- 3D legitimate for true 3D spatial data
- 3D needs very careful justification for abstract data
 - enthusiasm in 1990s, but now skepticism
 - be especially careful with 3D for point clouds or networks

Justified 3D: shape perception

- benefits outweigh costs when task is shape perception for 3D spatial data
- interactive rotation supports synthesis across many viewpoints

Perspective distortion loses information

- perspective distortion
- indifference with all size channel encodings
- power of the plane is lost!
Eyes beat memory
- principle: external cognition vs. internal memory
 - easy to compare by moving eyes between side-by-side views
 - harder to compare visible item to memory of what you saw
- implications for animation
 - great for choreographed storytelling
 - great for transitions between states
 - poor for many states with changes everywhere
 - consider small multiples instead

Why not animation?
- disparate frames and regions comparison difficult
 - vs contiguous frames
 - vs small region
 - vs coherent motion of group
- safe special case
 - animated transitions

Resolution beats immersion
- overview first, zoom and filter, details on demand
- Why not animation?

Change blindness
- If attention is directed elsewhere, even drastic changes not noticeable
 - remember door experiment!
- change blindness demos
 - mask in between images

Rule of thumb: Responsiveness is required
- start with focus on functionality
 - possible to improve aesthetics later on, as refinement
- if expert in-house, find good graphic designer to work with
 - aesthetics do matter; another level of function
- visual hierarchy, alignment, flow

Function first, form next
- start with focus on functionality
 - possible to improve aesthetics later on, as refinement
- if expert in-house, find good graphic designer to work with
 - aesthetics do matter; another level of function
- visual hierarchy, alignment, flow
- Geeks principles in action
 - (not covered in this class)

Form: Basic graphic design ideas
- proximity
 - do group related items together
- alignment
 - avoid equal width boxes
- repetition
 - do only by using existing consistencies
- contrast
 - (not covered in this class)

Best practices: Labelling
- make visualizations as self-documenting as possible
 - meaningful & useful title, labels, legends
 - axes and panes/subwindows should have labels

Methodology for problem-driven work
- definitions
- 9-stage framework
- 32 pitfalls & how to avoid them
- comparison to related methodologies

Animation: Blink comparator
- just two contiguous frames is a special case: animation beats side by side
 - blink comparator used to discover Pluto

Change blindness example: Cerebral
- small multiples: one graph instance per experimental condition
 - same spatial layout
 - color differently by condition

Why not animation?
- disparate frames and regions comparison difficult
 - vs contiguous frames
 - vs small region
 - vs coherent motion of group
- safe special case
 - animated transitions

Animation: Blink comparator
- just two contiguous frames is a special case: animation beats side by side
 - blink comparator used to discover Pluto
Lessons learned from the trenches: 21 between us

Design study methodology: definitions

9 stage framework

9-stage framework

Design study methodology: 32 pitfalls

• and how to avoid them
Design study methodology: 32 pitfalls

PITFALL
Premature Design Commitment

Of course they need the cool technique I built last year!

METAPHOR
Design Space

- Fellow tool builders
- Data promised

EXAMPLE FROM THE TRENCHES
Premature Collaboration!

PowerSet Viewer
2 years / 4 researchers

WikiVis
0.5 years / 2 researchers

- Fellow tool builders
- Data promised

PITFALL
Premature Collaboration!

Don't step on your own toes!

EXAMPLE FROM THE TRENCHES
Horse Race vs. Music Debut

PITFALL
Premature Publishing

I can write a design study paper in a week!

“writing is research”
[Wolcott Writing up qualitative research, 2009]

EXAMPLE FROM THE TRENCHES
Don't step on your own toes!

First design round published

Subsequent work not stand-alone paper

Technique-driven

Problem-driven

Must be first!

Am I ready?

Think broad!
Reflections from the stacks: Wholesale adoption inappropriate
• ethnography
 – rapid, goal-directed fieldwork
• grounded theory
 – not empty slate: background is key
• action research
 – aligned
 * intervention as goal
 * transferability not reproducibility
 * personal involvement is key
• opposition
 * translation of participant concepts into visualization language
• researcher lead not facilitate design
• orthogonal to vis concerns: participants as writers, adversarial to status quo, postmodernity