Research Papers and Process

Tamara Munzner
Department of Computer Science
University of British Columbia

15 November 2022

Research Process & Pitfalls

writing infovis papers: pitfalls to avoid

Today
• papers & research pitfalls & process
 – writing infovis research papers
 – review reading, review writing, conference talks
• course endgame expectations
 – final presentations
 – final report
• text course paper vs research paper differences
 – [evaluations]
 – open science
 – making research available, reproducible, replicable

Pitfalls
• writing infovis papers: pitfalls to avoid

Idiom pitfalls
• Unjustified Visual Encoding
 – should justify why visual encoding design choices appropriate for problem
 – prerequisite: clear statement of problem and encoding!
• Hammer In Search of Nail
 – should characterize capabilities of new technique if proposed in paper
• Color Cacophony
 – avoid blatant disregard for basic color perception issues
 – hue of highly saturated color
 – categorical color coding for 15+ category levels
 – green without luminance issues
 – encoding 3 separate attributes with RGB
• Rainbows Just Like In The Sky
 – avoid hue for ordered attribs, perceptual nonlinearity along rainbow gradient

Later pitfalls: Tactics
• Stealth Contributions
 – don’t leave them implicit, it’s your job to tell reader explicitly!
 – consider carefully, often different from original project goals
• I Am Utterly Perfect
 – no you’re not; discussion of limitations makes paper stronger!

Idiom pitfalls
• Unjustified Tasks
 – don’t leave unsaid should be obvious after close reading of previous work
• I Just Know Person X Wrote This Review
 – sometimes true, sometimes false
 – diverged from original goals, in retrospect
• Dense As Plutonium
 – make research available, reproducible, replicable
• Least Publishable Unit
 – don’t hope reviewer or reader will fill them in for you

Other pitfalls
• What I Did Over My Summer Vacation
 – don’t focus on effort rather than contribution
 – don’t be too low level, it’s not a manual
• Bad Slice and Dice
 – two papers split up wrong
 – neither is standalone, yet both repeat

Later pitfalls: Strategy
• Stealth Contributions
 – don’t leave them implicit, it’s your job to tell reader explicitly!
 – consider carefully, often different from original project goals
• I Am So Unique
 – don’t focus on effort rather than contribution
 – don’t leave unsaid should be obvious after close reading of previous work
 – sometimes false: weak work common! reinvent the wheel worse than previous one

Later pitfalls: Results
• Unfettered By Time
 – choose level of detail for performance numbers
 – detailed graphs for technique papers, high-level for design & eval papers
• Star Comparison
 – compare appropriately against state-of-the-art algorithms
 – head-to-head hardware is best (re-run benchmarks yourself, all on same machine)
• Tiny Toy Datasets
 – compare against state-of-the-art dataset sizes for technique (small ok for eval)
• But My Friends Liked It
 – asking lamabtes not convincing if target audience is domain experts
• Unjustified Tasks
 – use ecologically valid user study tasks: convincing abstraction of real-world use

Final pitfalls: Style
• Deadly Detail Dump
 – explain how only after what and why; provide high-level framing before low-level detail
• Story-Free Captions
 – optimize for flip-through-pictures skimming
 – avoid cutting through images with discussion
• Grammar Is Optional
 – good-low level flow is necessary (but not sufficient), native speaker check good if ESL
• Mistakes Were Made
 – don’t use passive voice, leaves ambiguity about actor
 – your research contribution or done by others?

Final pitfalls: Style 2
• Jargon Attack
 – avoid where you can, define on first use
 – all acronyms should be defined
• Nonspecific Use Of Large

Contributions in research papers
• what are your research contributions?
 – what can we do that wasn’t possible before?
 – how can we do something better than before?
 – what do we know that was unknown or unclear before?
• determines everything
 – from high-level message to which details worth including
• often not obvious
 – diverged from original goals, in retrospect
 – state them explicitly and clearly in the introduction
 – don’t hope reviewer or reader will fill them in for you
 – don’t leave unsaid should be obvious after close reading of previous work
 – goal is clarity, not overrelying (limitations typically later, in discussion section)

Final pitfalls: Submission
• Slimy Simultaneous Submission
 – often detected when same reviewer for both
 – instant dual rejection, often multi-conference blacklist
• Resubmit Unchanged
 – respond to previous reviews; often get reviewer overlap, irritated if ignored

Generality
• encoding: visualization specific
 – strategy: all research
 – tactics: all research
• results: visualization specific
• style: all research, except
 – Story-Free Captions, My Picture Speaks For Itself

Research Process & Pitfalls

Contributions in research papers
• what are your research contributions?
 – what can we do that wasn’t possible before?
 – how can we do something better than before?
 – what do we know that was unknown or unclear before?
• determines everything
 – from high-level message to which details worth including
• often not obvious
 – diverged from original goals, in retrospect
 – state them explicitly and clearly in the introduction
 – don’t hope reviewer or reader will fill them in for you
 – don’t leave unsaid should be obvious after close reading of previous work
 – goal is clarity, not overrelying (limitations typically later, in discussion section)

Other pitfalls
• What I Did Over My Summer Vacation
 – don’t focus on effort rather than contribution
 – don’t be too low level, it’s not a manual
• Bad Slice and Dice
 – two papers split up wrong
 – neither is standalone, yet both repeat

Final pitfalls: Style
• Deadly Detail Dump
 – explain how only after what and why; provide high-level framing before low-level detail
• Story-Free Captions
 – optimize for flip-through-pictures skimming
• Grammar Is Optional
 – good-low level flow is necessary (but not sufficient), native speaker check good if ESL
• Mistakes Were Made
 – don’t use passive voice, leaves ambiguity about actor
 – your research contribution or done by others?

Final pitfalls: Style 2
• Jargon Attack
 – avoid where you can, define on first use
 – all acronyms should be defined
• Nonspecific Use Of Large

Contributions in research papers
• what are your research contributions?
 – what can we do that wasn’t possible before?
 – how can we do something better than before?
 – what do we know that was unknown or unclear before?
• determines everything
 – from high-level message to which details worth including
• often not obvious
 – diverged from original goals, in retrospect
 – state them explicitly and clearly in the introduction
 – don’t hope reviewer or reader will fill them in for you
 – don’t leave unsaid should be obvious after close reading of previous work
 – goal is clarity, not overrelying (limitations typically later, in discussion section)

Other pitfalls
• What I Did Over My Summer Vacation
 – don’t focus on effort rather than contribution
 – don’t be too low level, it’s not a manual
• Bad Slice and Dice
 – two papers split up wrong
 – neither is standalone, yet both repeat

Final pitfalls: Submission
• Slimy Simultaneous Submission
 – often detected when same reviewer for both
 – instant dual rejection, often multi-conference blacklist
• Resubmit Unchanged
 – respond to previous reviews; often get reviewer overlap, irritated if ignored

Generality
• encoding: visualization specific
 – strategy: all research
 – tactics: all research
• results: visualization specific
• style: all research, except
 – Story-Free Captions, My Picture Speaks For Itself

Research Process & Pitfalls

Contributions in research papers
• what are your research contributions?
 – what can we do that wasn’t possible before?
 – how can we do something better than before?
 – what do we know that was unknown or unclear before?
• determines everything
 – from high-level message to which details worth including
• often not obvious
 – diverged from original goals, in retrospect
 – state them explicitly and clearly in the introduction
 – don’t hope reviewer or reader will fill them in for you
 – don’t leave unsaid should be obvious after close reading of previous work
 – goal is clarity, not overrelying (limitations typically later, in discussion section)

Other pitfalls
• What I Did Over My Summer Vacation
 – don’t focus on effort rather than contribution
 – don’t be too low level, it’s not a manual
• Bad Slice and Dice
 – two papers split up wrong
 – neither is standalone, yet both repeat

Final pitfalls: Style
• Deadly Detail Dump
 – explain how only after what and why; provide high-level framing before low-level detail
• Story-Free Captions
 – optimize for flip-through-pictures skimming
• Grammar Is Optional
 – good-low level flow is necessary (but not sufficient), native speaker check good if ESL
• Mistakes Were Made
 – don’t use passive voice, leaves ambiguity about actor
 – your research contribution or done by others?

Final pitfalls: Style 2
• Jargon Attack
 – avoid where you can, define on first use
 – all acronyms should be defined
• Nonspecific Use Of Large
Review writing pitfalls
• Uncalibrated Dislay
 -- remember you've only read the best of the best!
 -- most new reviewers are overly harsh
• It’s Been Done, Full Stop
 -- you must say who did it in which paper, full citation is best
• You Didn’t Cite Me
 -- stop and think whether it’s appropriate
• You Didn’t Channel Me
 -- don’t compare against paper you would have written
 -- review the paper they submitted

Paper writing process suggestions
• pre-paper talk
 -- write and give talk first, as if presenting at conference
 -- interact on talk to get to structure, ordering arguments
 -- then create paper outline from final draft of slides
• encourage cross-lecture discussions of critical ideas, creation of key diagrams
• foster understanding of the big picture and rhetorical
• ease out to slide topics you probed over
• pre-paper/practice talk feedback session: at least 2-3x talk length
• global comments, then slide by slide detailed discussion
• nurture culture of internal critique (build your own critique group if necessary)
• have non-authors read paper before submitting
 -- internal review can catch many problems
 -- ideally group feedback session as above

Conference talk pitfalls
• Results As Dessert
 -- don’t save until the end as a reward for the stalwart!
 -- showcase early to motivate
• A Ton of Words, No Pictures
 -- aggressively replace words with illustrations
 -- most slides should have a picture
• Full Coverage Or Bust
 -- can’t fit all details from paper
 -- communicate big picture
 -- talk as advertising: convince them it’s worth their time to read paper!

Course Endgame

Final presentations: Wed Dec 14 2:5-15 pm
• length (14 projects)
 -- presentation live (or pre-recorded) 10 min for groups, 8 min for solo
 -- Q&A live 2 min per project
• session structure
 -- order reverse alphabetical by name, from bottom up on project page
 -- 2 breaks, between each set of 6 presentations
 -- CS dept (fac / grads) & infovis group invited, friends/others very welcome!
 -- refreshments served

Final presentsation content
• presentation structure
 -- motivate: framing, project, results, critique/limitation
 -- condition: don’t assume audience has read proposal or updates (or remember your pitch)
 -- slides (or slide numbers) mandatory for main part
 -- demo strongly encouraged, either live or pre-rendered
 -- format is up to you live presentation or pre-recorded video or a mix
 -- slides/video upload
 -- upload to Canvas: Assignments: Final Slides (mandatory), Final Video (optional)
 -- by noon Wed Dec 14
 -- note: code freeze after presentations!
 -- no additional work on project allowed after presentation deadline
 -- additional two days to get it all written down coherently for final report

Marking: Course overall
• 36% Aspnic Discussion
 -- 9 weeks, 4% per week (mostly)
 -- 75% own comments, 25% responses
 -- (get past 5 codes)
• 14% Sync: In-Class Participation
 -- 12 sessions, 1% per session
 -- 2% final presentations
 -- (most got full credit)

Final Presentations

Course requirements vs research paper standards
• research novelty not required
 -- your choice to use Lever/Xing/what/whenever
 -- no length cap: illustrate freely with screenshots!
• mid-level discussion of implementation is required
• low-level detail that review process, update writeups
• encourage writing about your correctness and style guidelines

Logistics
• Assignments: Final Presentations on Canvas
 -- uploaded due Wed Dec 14 noon (2 hrs before session)
 -- required & pre-slides: Project Final Presentation Slides, PDF
 -- optional & pre-video: Project Final Presentation Video, npt
• Assignment: Final Report on Canvas
 -- due Fri Dec 16 8pm (PST)
 -- required & pre-report: Project Final Report, PDF
 -- required & pre-screenshot: Project Screenshot Image, JPEG
 -- required but not posted code in README (Project Source Code and Other Materials, zip)
 -- encouraged & pre-test: URLs (include in code README)
 -- encouraged & pre-video: (video zip "any" if different from final video project)

Course Endgame

Final reports
• PDF use Infdev templates
• no long caps: illustrate freely with screenshots!
• design study / technique aim for at least 6-8 pages
• analysis / survey aim for at least 15-20 pages
• strongly encouraged to re-use text from proposal & update writeups

Sample outlines: Design study
• https://www.cs.ubc.ca/~tmm/courses/547-22/projdes/index.html
 -- Abstract
 -- concisely summarize your project
 -- do not include citations
 -- Introduction
 -- give big picture, establish scope, some background material might be appropriate
 -- Related work
 -- include both work aimed at similar problems & similar solutions

Report structure: General
• how low-level necessary but not sufficient
 -- concisely summarize your project
• how low-level necessary but not sufficient
 -- concisely summarize your project
• full presentation
• abstract
• motivation
• related work
• background
• methodology
• results
• discussion
• limitations
• conclusion
Open Science: Available, Reproducible, & Replicable Research

Data and Task Abstractions
- analyze your domain problem according to book framework (what/why)
- include both language-domain descriptions and abstract versions
- could split into data vs task, domain vs abstr - or vice versa!
- typically data first then task, so that can refer to data after within task abstr - must have tight connections between data & task abstr
Solution
- describe your solution idea (visual encoding and interaction)
- analyze it according to book framework (how)
 - only for custom encodings, no need to repeat book material for standard chart types
- justify your design choices as solutions to problem set up w/ data/task abstractions
- provide rationale. Design choices with respect to abstractions
 - if significant algorithm work, discuss algorithm and data structures
 - must have tight connections between data & task abstr

Sample outlines: Study design (II)

Abstract
- related study & explainer
Implementation
- medium-level implementation description
- how to compile and run
Data and task abstractions
- medium-level implementation description
- how to compile and run
- which parts are your code vs libraries
Results
- include visualizations, extensionally illustrated with multiple screenshots of your software
- must have live demo URL (provide in README.txt file)
- submit live demo URL (provide in README.txt file)
Discussion / Future Work
- walk reader through exactly how your interface succeeds (or falls short) of solving intended problem
- include scenarios of use, extensively illustrated with multiple screenshots of your software
- provide rationale, discuss choices with respect to alternatives
- if significant algorithm work, discuss algorithm and data structures
- must have tight connections between data & task abstr
- must have tight connections between data & task abstr

Sample outlines: Study design (III)

Abstract
- same as above
Introduction
- discuss the scope of what you're covering, why it's interesting/important/innovative compared to visualization as a field
Related Work
- related studies/previous work (include citations)
Results
- present results systematically, in a way that demonstrates the progression of your work
- include images from papers
Discussion / Future Work
- reflect on your approach, strengths, weaknesses, limitations
- lessons learned: what do you know now that you didn't when you started?
- future work: what would you do if you had more time?

Sample outlines: Study design (IV)

Conclusions
- summarize what you've done
 - different than abstract since reader has seen all the details
Biography
- note format is numerical & alphabetical
 - use citation manager / bibtex!
 - make sure to use references for work that's been published academically
 - don't just URL
- check arXiv papers, some have link to final publication, also search on twitter!
- check carefully to ensure consistency & nothing mangled or missing
- most online sources require cleanup
 - see guidance at https://www.cs.ubc.ca/~tmm/writing.html#refs
Marking
- design study & technique & explanation
 - 12.5% each for
 - intro
 - related work
 - abstractions
 - implementation/milestones
 - discussion
 - 10% style, 2.5% bibliography

Sample outlines: Implementation (diiffs)

Abstract (same as above)
Introduction
- discuss the scope of what you're covering, why it's interesting/important/innovative compared to visualization as a field
Related Work
- related studies/previous work (include citations)
Results
- present results systematically, in a way that demonstrates the progression of your work
Discussion / Future Work
- reflect on your approach, strengths, weaknesses, limitations
- lessons learned: what do you know now that you didn't when you started?
- future work: what would you do if you had more time?

Sample outlines: Survey (diiffs)

Abstract (same as above)
Introduction
- discuss the scope of what you're covering, why it's interesting/important/innovative compared to visualization as a field
Related Work
- related studies/previous work (include citations)
Results
- present results systematically, in a way that demonstrates the progression of your work
Discussion / Future Work
- reflect on your approach, strengths, weaknesses, limitations
- lessons learned: what do you know now that you didn't when you started?
- future work: what would you do if you had more time?

Sample outlines: Design study III

Implementation
- medium-level implementation description
- how to compile and run
Results
- include visualizations, extensionally illustrated with multiple screenshots of your software
- must have live demo URL (provide in README.txt file)
Discussion / Future Work
- walk reader through exactly how your interface succeeds (or falls short) of solving intended problem
- include scenarios of use, extensively illustrated with multiple screenshots of your software
- provide rationale, discuss choices with respect to alternatives
- if significant algorithm work, discuss algorithm and data structures
- must have tight connections between data & task abstr
- must have tight connections between data & task abstr

Sample outlines: Design study IV

Abstract
- related study & explainer
Implementation
- medium-level implementation description
- how to compile and run
Data and task abstractions
- medium-level implementation description
- how to compile and run
Results
- include visualizations, extensionally illustrated with multiple screenshots of your software
- must have live demo URL (provide in README.txt file)
Discussion / Future Work
- walk reader through exactly how your interface succeeds (or falls short) of solving intended problem
- include scenarios of use, extensively illustrated with multiple screenshots of your software
- provide rationale, discuss choices with respect to alternatives
- if significant algorithm work, discuss algorithm and data structures
- must have tight connections between data & task abstr
- must have tight connections between data & task abstr

Sample outlines: Implementation (diiffs)

Abstract (same as above)
Introduction
- discuss the scope of what you're covering, why it's interesting/important/innovative compared to visualization as a field
Related Work
- related studies/previous work (include citations)
Results
- present results systematically, in a way that demonstrates the progression of your work
Discussion / Future Work
- reflect on your approach, strengths, weaknesses, limitations
- lessons learned: what do you know now that you didn't when you started?
- future work: what would you do if you had more time?

Sample outlines: Technique (diiffs)

Abstract (same as above)
Introduction
- big focus on similar solutions, some discussion of similar problems (same task/data combo)
Data and Task Abstractions
- much shorter than the corresponding one for design studies, framing context not core
Solution
- design choices proposed/can essentially not justify use for particular domain problem
- as above, analyze in terms of design choices, justify why appropriate vs alternatives
Implementation/Milestones (same as above)
Results
- less emphasis on scenarios with particular target users
- more emphasis on characterizing the breadth of possible uses
- still definitely include screenshots of the system in action
Discussion / Future Work, Conclusions, Bibliography (same as above)

Open Science: Available, Reproducible, & Replicable Research

Making your research available & reproducible: why bother?
- moral high ground
- for science
- enlightened self-interest
- make your own life easier
- you'll be cited more often by academics
- your work more likely to be used by industry

Making the world care about your research!
- Increasing the Impact of Visualization Research panel, VIS 2017
 - Krao Wangsuphaswat, Data Visualization Scientists, Twitter

Disseminating research
- paper page for each paper
 - everything! PDF, supplemental materials, videos, software/demos, talk slides, figures, ...
 - examples:
 - Table Script: https://www.cs.ubc.ca/group/infovis/pubs/2020/table-scraps/
 - TMM: http://www.cs.ubc.ca/~tmm/writing.html#refs
- write blog post to accompany each paper
 - very high-impact bang for the time buck
 - Multiple Views: Visualization Research Explained umbrella blog
 - https://medium.com/multiple-views-visualization-research-explained
 - UW IDL individual lab blog
 - https://washington-idl.github.io/2020/08/Dissemination-Surprise-Pages/

Code / Video
- required: submit your code
 - so I can see what you've done, but I will not post
 - include README.txt file at root with brief roadmap/overview of organization
 - which parts are your code vs libraries
 - how to compile and run
 - lic or no need to submit data if it's huge
- encouraged but not required
 - submit live demo URL (provide in README.txt file)
 - open-source your code (if so, feel free to just send me that URL)
 - submit supporting video (if different from final presentation)
 - walk through without voiceover
 - voiceover is very nice to have later, software bitrot makes demos not last forever!

Marking
- design study & technique & explanation
 - 12.5% each for
 - intro
 - related work
 - abstractions
 - implementation/milestones
 - discussion
 - 10% style, 2.5% bibliography

Sample outlines: Implementation (diiffs)

Abstract (same as above)
Introduction
- discuss the scope of what you're covering, why it's interesting/important/innovative compared to visualization as a field
Related Work
- related studies/previous work (include citations)
Results
- present results systematically, in a way that demonstrates the progression of your work
Discussion / Future Work
- reflect on your approach, strengths, weaknesses, limitations
- lessons learned: what do you know now that you didn't when you started?
- future work: what would you do if you had more time?

Sample outlines: Implementation (diiffs)

Abstract
- same as above
Introduction
- discuss the scope of what you're covering, why it's interesting/important/innovative compared to visualization as a field
Related Work
- related studies/previous work (include citations)
Results
- present results systematically, in a way that demonstrates the progression of your work
Discussion / Future Work
- reflect on your approach, strengths, weaknesses, limitations
- lessons learned: what do you know now that you didn't when you started?
- future work: what would you do if you had more time?

Sample outlines: Implementation (diiffs)

Abstract (same as above)
Introduction
- discuss the scope of what you're covering, why it's interesting/important/innovative compared to visualization as a field
Related Work
- related studies/previous work (include citations)
Results
- present results systematically, in a way that demonstrates the progression of your work
Discussion / Future Work
- reflect on your approach, strengths, weaknesses, limitations
- lessons learned: what do you know now that you didn't when you started?
- future work: what would you do if you had more time?

Sample outlines: Implementation (diiffs)

Abstract
- same as above
Introduction
- discuss the scope of what you're covering, why it's interesting/important/innovative compared to visualization as a field
Related Work
- related studies/previous work (include citations)
Results
- present results systematically, in a way that demonstrates the progression of your work
Discussion / Future Work
- reflect on your approach, strengths, weaknesses, limitations
- lessons learned: what do you know now that you didn't when you started?
- future work: what would you do if you had more time?
Supplemental materials: provide as much as possible

- demo videos show interactive look & feel
- data for computational benchmarks & case studies
- tricky issue in visualization: data might not be yours to release!
- qualitative work: thematic analysis raw & intermediate materials
- quant experimental stimuli: full set of images, not just a few examples
- quant evaluation: data analysis code/scripts
- evaluation: detailed study results
- advance planning ethics approval of satire PR (personally identifiable information)
- technique refinement: previous iterations
- parameters: how exactly to regenerates/produce figures, tables
- additional case studies, screenshots, other exposition
- surveys / design spaces: interactive faceted browser
- examples: treevis.net, dashboarddesignpatterns.github.io

Dissemination & reproducibility: motivation & howto

- Open Practices in Vis Research, Steve Haroz
 - https://osf.io/g6gj/download
- Cody Dunne VIS22 panel talk (10 min)
- Simon VanNo's entire Sometimes I'm Wrong blog
 - http://simonvann.oop.org/wrongblog
- Joe Simmons Data Colada blog post What I Won Our Field to Prioritize
- Dara Harvey's brave statement on her previous power pose work
- VI: https://youtu.be/nPdr7xybUbA

Reproducibility: Levels of effort required

- 0: cannot be reproduced
- 1: cannot seem to be reproduced
- 2: extreme effort
- 3: considerable effort
- 4: 15 minutes with proprietary tools
- 5: 15 minutes with free tools

Next week: Research guests & more

- Steve Kasica (UBC)
 - qualitative research
- Stephen Kobourov (Arizona)
 - techniques & algorithms
- Mara Solen (UBC)
 - survey papers
 - me
 - design spaces for visualization
 - visualizing imperfect models
 - next steps

- Mara Solen (UBC)
 - survey papers
 - me
 - design spaces for visualization
 - visualizing imperfect models
 - next steps

Reference dissemination: what to provide

- paper
 - put it online at non-paywalled site
- algorithm
 - document well in paper itself
 - document further with code
- code
 - make available as open source (github.com)
 - pick right spot on continuum of effort involved, from minimal to massive
 - just put it up works and all, minimal documentation
 - well documented and tested
 - Build a whole community - (not the common case)
- supplemental materials

Replication: crisis in psychology, medicine, etc

- early rumblings left me with (ignorable) qualms
 - papers: Is most of psychology true?
 - many willing to repudiate (their own) earlier styles of working
- open: great for supplemental materials in addition to paper (vs arxiv focus on paper PDF)
 - can create anonymous view-only link for double-blind review
 - examples: osf.io/tr3sb, osf.io/uezfk
- optional, not mandatory
 - advice: post when you submit, update with camera-ready

Upcoming

- Reproduction in Signal Processing - What, why, and how

Remarkable introspection on methods

- psych: thoughtful willingness to change standards of field
- Simon VanNo’s entire Sometimes I’m Wrong blog
 - http://simonvann.oop.org/wrongblog
- Joe Simmons Data Colada blog post What I Won Our Field to Prioritize
- Dara Harvey’s brave statement on her previous power pose work
- VI:
 - https://youtu.be/nPdr7xybUbA

When and how will this storm hit visualization?

- they’re ahead of us (they = psychology)
- they have some paper retractions
- we don’t (yet) have any retractions for methodological considerations
- we agonize about difficulty of getting failure-to-replicate papers accepted
- they hardly ever even try to do such work
- they are a much older field
- we hardly ever even try to do such work
- we are a much older field
- there are a much older field
- they have rich fabric of blogs as major drivers of discussion
- we have few active bloggers

- replication crisis was focus of BELIV 2018 workshop at IEEE VIS
 - evaluation and BEyond - methodological approaches for Visualization