Information Visualization
Reduce: Aggregation & Filtering

Project Peer Reviews

Tamara Munzner
Department of Computer Science
University of British Columbia

Week 12, 16 Nov 2022

https://www.cs.ubc.ca/~tmm/courses/547-22
Today

• first: project peer reviews
 – join your matched teams
 • you've already read other team's written update
 – let me know by private Piazza post if your counterpart(s) weren't prepared
 – record discussion/thoughts in gdoc (freeform)
 – first A critiques B; then B critiques A

• break

• Q&A / mini-lecture this time
 – Ch 13, Reduce
Peer reviews

• rough structure (adapt as you like, aim for ~45-60 min)
 – talk through initial thoughts when read updates
 – ask clarifying questions
 – get demo to see look/feel & any interaction
 – discuss tradeoffs, design choices, suggestions
 – when conversation winds down, critiquers record braindump (if not done as you go)
 – write DONE at top of your gdoc section & switch!

• tips on giving feedback
 – state what you think is good about the work, and why you think so
 – state what you think needs improvement, including why/rationale
 – offer specific suggestions on how to improve it, as followup
 – keep your feedback focused on the work, not the person who did it
Upcoming

• next week (W12)
 – async: last week of readings / discussion (light, 2 readings)
 • Ch 14: Embed - Focus+Context
 [type: design study]
 – in class: post-update meetings with Tamara
 • oral feedback on project progress, after I’ve read them
Visualization Analysis & Design

Reduce: Aggregation & Filtering (Ch 13)

Tamara Munzner
Department of Computer Science
University of British Columbia
@tamaramunzner
How to handle complexity: 3 previous strategies

Derive

- derive new data to show within view
- change view over time
- facet across multiple views

Manipulate

- Change
- Select
- Navigate

Facet

- Juxtapose
- Partition
- Superimpose
How to handle complexity: 3 previous strategies + 1 more

- Derive

 - Derive new data to show within view
 - Change view over time
 - Facet across multiple views
 - Reduce items/attributes within single view

- Manipulate

 - Change

 - Select

 - Navigate

- Facet

 - Juxtapose

 - Partition

 - Superimpose

- Reduce

 - Filter

 - Aggregate

 - Embed
Reduce items and attributes

• reduce/increase: inverses

• filter
 – pro: straightforward and intuitive
 • to understand and compute
 – con: out of sight, out of mind
Reduce items and attributes

- reduce/increase: inverses
- filter
 - pro: straightforward and intuitive
 - to understand and compute
 - con: out of sight, out of mind
- aggregation
 - pro: inform about whole set
 - con: difficult to avoid losing signal
- not mutually exclusive
 - combine filter, aggregate
 - combine reduce, change, facet

Reducing Items and Attributes

 FILTER

- Items
- Attributes

 AGGREGATE

- Items
- Attributes
Filter

• eliminate some elements
 – either items or attributes

• according to what?
 – any possible function that partitions dataset into two sets
 • attribute values bigger/smaller than x
 • noise/signal

• filters vs queries
 – query: start with nothing, add in elements
 – filters: start with everything, remove elements
 – best approach depends on dataset size
Idiom: **FilmFinder**

- dynamic queries/filters for items
 - tightly coupled interaction and visual encoding idioms, so user can immediately see results of action

Idiom: cross filtering

• item filtering
• coordinated views/controls combined
 – all scented histogram bisliders update when any ranges change

System: Crossfilter

http://square.github.io/crossfilter/
https://observablehq.com/@uwdata/interaction
Aggregate

- A group of elements is represented by a smaller number of derived elements.

Aggregate

- **Items**
 - Source
 - Target

- **Attributes**
 - Source
 - Target
Idiom: histogram

- static item aggregation
- task: find distribution
- data: table
- derived data
 - new table: keys are bins, values are counts
- bin size crucial
 - pattern can change dramatically depending on discretization
 - opportunity for interaction: control bin size on the fly
Idiom: *scented widgets*

• augmented widgets show *information scent*
 – better cues for *information foraging*: show whether value in drilling down further vs looking elsewhere
• concise use of space: histogram on slider

Idiom: scented widgets

- augmented widgets show information scent
 - better cues for information foraging: show whether value in drilling down further vs looking elsewhere
- concise use of space: histogram on slider

Idiom: **scented widgets**

- augmented widgets show *information scent* – better cues for *information foraging*: show whether value in drilling down further vs looking elsewhere
- concise use of space: histogram on slider

Scented histogram bisliders: detailed

[ICLIC: Interactive categorization of large image collections. van der Corput and van Wijk. Proc. PacificVis 2016.]
Idiom: **boxplot**

- static item aggregation
- task: find distribution
- data: table
- derived data
 - 5 quant attributes
 - median: central line
 - lower and upper quartile: boxes
 - lower upper fences: whiskers
 - values beyond which items are outliers
 - outliers beyond fence cutoffs explicitly shown
- scalability
 - unlimited number of items!

[40 years of boxplots. Wickham and Stryjewski, 2012]
Idiom: **Continuous scatterplot**

- static item aggregation
- data: table
- derived data: table
 - key attrs x,y for pixels
 - quant attr: overplot density
- dense space-filling 2D matrix
- color:
 sequential categorical hue + ordered luminance colormap
- scalability
 - no limits on overplotting: millions of items
Spatial aggregation

- **MAUP: Modifiable Areal Unit Problem**
 - changing boundaries of cartographic regions can yield dramatically different results
 - zone effects

- scale effects

[http://www.e-education.psu.edu/geog486/l4_p7.html, Fig 4.cg.6]

Gerrymandering: MAUP for political gain

A real district in Pennsylvania:
Democrats won 51% of the vote but only 5 out of 18 house seats

https://www.washingtonpost.com/news/wonk/wp/2015/03/01/this-is-the-best-explanation-of-gerrymandering-you-will-ever-see/
Dynamic aggregation: Clustering

• clustering: classification of items into similar bins
 – based on similarity measure
 – hierarchical algorithms produce "similarity tree": cluster hierarchy
 • agglomerative clustering: start w/ each node as own cluster, then iteratively merge

• cluster hierarchy: derived data used w/ many dynamic aggregation idioms
 – cluster more homogeneous than whole dataset
 • statistical measures & distribution more meaningful
Idiom: **Hierarchical parallel coordinates**

- dynamic item aggregation
- derived data: **cluster hierarchy**
- encoding:
 - cluster band with variable transparency, line at mean, width by min/max values
 - color by proximity in hierarchy

Dimensionality Reduction
Attribute aggregation: Dimensionality reduction

- attribute aggregation
 - derive low-dimensional target space from high-dimensional measured space
 - capture most of variance with minimal error
 - use when you can’t directly measure what you care about
 - true dimensionality of dataset conjectured to be smaller than dimensionality of measurements
 - latent factors, hidden variables

<table>
<thead>
<tr>
<th>tumor</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
</tr>
<tr>
<td>data</td>
</tr>
</tbody>
</table>

→ DR →

<table>
<thead>
<tr>
<th>benign</th>
</tr>
</thead>
<tbody>
<tr>
<td>derived data: 2D target space</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>malignant</th>
</tr>
</thead>
<tbody>
<tr>
<td>data: 9D measured space</td>
</tr>
</tbody>
</table>
Dimensionality vs attribute reduction

- vocab use in field not consistent
 - dimension/attribute
- attribute reduction: reduce set with filtering
 - includes orthographic projection
- dimensionality reduction: create smaller set of new dims/attrs
 - typically implies dimensional aggregation, not just filtering
 - vocab: projection/mapping
Dimensionality reduction & visualization

• why do people do DR?
 – improve performance of downstream algorithm
 • avoid curse of dimensionality
 – data analysis
 • if look at the output: visual data analysis

• abstract tasks when visualizing DR data
 – dimension-oriented tasks
 • naming synthesized dims, mapping synthesized dims to original dims
 – cluster-oriented tasks
 • verifying clusters, naming clusters, matching clusters and classes

Dimension-oriented tasks

• naming synthesized dims: inspect data represented by lowD points

Cluster-oriented tasks

- verifying, naming, matching to classes

Idiom: Dimensionality reduction for documents

Task 1

<table>
<thead>
<tr>
<th>In HD data</th>
<th>Out 2D data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1</td>
<td>Dim 1</td>
</tr>
<tr>
<td>Item ...</td>
<td>Dim ...</td>
</tr>
<tr>
<td>Item n</td>
<td>Dim n</td>
</tr>
</tbody>
</table>

Task 2

<table>
<thead>
<tr>
<th>In 2D data</th>
<th>Out Scatterplot Clusters & points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1</td>
<td>Dim 1</td>
</tr>
<tr>
<td>Item ...</td>
<td>Dim ...</td>
</tr>
<tr>
<td>Item n</td>
<td>Dim n</td>
</tr>
</tbody>
</table>

Task 3

<table>
<thead>
<tr>
<th>In Scatterplot Clusters & points</th>
<th>Out Labels for clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wombat</td>
<td></td>
</tr>
</tbody>
</table>
Latest algorithms: t-SNE, UMAP

- t-SNE https://distill.pub/2016/misread-tsne/
- UMAP https://pair-code.github.io/understanding-umap/
Interacting with dimensionally reduced data

[https://uclab.fh-potsdam.de/projects/probing-projections/]

Linear dimensionality reduction

• principal components analysis (PCA)
 – finding axes: first with most variance, second with next most, …
 – describe location of each point as linear combination of weights for each axis
 • mapping synthesized dims to original dims
Nonlinear dimensionality reduction

• pro: can handle curved rather than linear structure
• cons: lose all ties to original dims/attrs
 – new dimensions often cannot be easily related to originals
 – mapping synthesized dims to original dims task is difficult

• many techniques proposed
 – many literatures: visualization, machine learning, optimization, psychology, ...
 – techniques: t-SNE, MDS (multidimensional scaling), charting, isomap, LLE, …
 – t-SNE: excellent for clusters
 – but some trickiness remains: http://distill.pub/2016/misread-tsne/
 – MDS: confusingly, entire family of techniques, both linear and nonlinear
 – minimize stress or strain metrics
 – early formulations equivalent to PCA
VDA with DR example: nonlinear vs linear

• DR for computer graphics reflectance model
 – goal: simulate how light bounces off materials to make realistic pictures
 • computer graphics: BRDF (reflectance)
 – idea: measure what light does with real materials

[Fig 2. Matusik, Pfister, Brand, and McMillan. A Data-Driven Reflectance Model. SIGGRAPH 2003]
Capturing & using material reflectance

- reflectance measurement: interaction of light with real materials (spheres)
- result: 104 high-res images of material
 - each image 4M pixels
- goal: image synthesis
 - simulate completely new materials
- need for more concise model
 - 104 materials * 4M pixels = 400M dims
 - want concise model with meaningful knobs
 - how shiny/greasy/metallic
 - DR to the rescue!

[Figs 5/6. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]
Linear DR

• first try: PCA (linear)
• result: error falls off sharply after ~45 dimensions
 – scree plots: error vs number of dimensions in lowD projection
• problem: physically impossible intermediate points when simulating new materials
 – specular highlights cannot have holes!

[Figs 6/7. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]
Nonlinear DR

• second try: charting (nonlinear DR technique)
 – scree plot suggests 10-15 dims
 – note: dim estimate depends on technique used!

[Fig 10/11. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]
Finding semantics for synthetic dimensions

• look for meaning in scatterplots
 – synthetic dims created by algorithm but named by human analysts
 – points represent real-world images (spheres)
 – people inspect images corresponding to points to decide if axis could have meaningful name

• cross-check meaning
 – arrows show simulated images (teapots) made from model
 – check if those match dimension semantics

[Fig 12/16. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]
Understanding synthetic dimensions

Specular-Metallic

Diffuseness-Glossiness

[Fig 13/14/16. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]
Spatialization Design

Comparing Points and Landscapes

joint work with:
Melanie Tory, David W. Sprague, Fuqu Wu, Wing Yan So

Information Landscapes

• 2D or 3D landscape from set of DR points
 – height based on density
• oddly popular choice in DR
 – despite known occlusion/distortion problems with 3D
 – assertions: pattern recognition, spatial reasoning, familiar

Themescape: [http://www.k-n-o-r-z.de/publ/example/retriev1.htm]

Understanding User Task

• abstract: search involving spatial areas and estimation
 Estimate which grid cell has the most points of the target color

• domain-specific examples
 “Where in the display are people with high incomes?”
 “Does this area also have high education levels?”
 “Does this area correspond to a particular work sector?”

• non-trivial complexity yet fast response time
• frequent subtask in pilot test of real data analysis
Lab Study: Test Human Response Time and Error

- **hypotheses**
 - points are better than landscapes
 - result: yes!
 - much better: $2-4 \times$ faster, $5-14 \times$ more accurate
 - 2D landscapes (color only) better than 3D landscapes (color + height redundantly encoded)
 - result: yes
 - significantly faster, no significant difference in accuracy
How?

Encode

Arrange
- Express
- Separate

Order
- Align

Use

Map
- from categorical and ordered attributes
- Color
 - Hue
 - Saturation
 - Luminance
- Size, Angle, Curvature, ...

Shape
- + • □ △

Motion
- Direction, Rate, Frequency, ...

Manipulate

Change

Select

Navigate

Facet

Juxtapose

Partition

Superimpose

Reduce

Filter

Aggregate

Embed