Welcome!
547: who's who

• Instructor:
 – Tamara Munzner (she)

• TA:
 – Mara Solen (they)
Land acknowledgement

• I want to acknowledge that UBC is on the traditional, ancestral, and unceded territory of the Musqueam people

• When I'm zooming from home, I want to acknowledge I'm working from the unceded territory of the Musqueam, Sto:lo, Squamish, & Tsleil-Waututh First Nations
 – Traditional: recognizes lands traditionally used and/or occupied by the First Nations
 – Ancestral: recognizes land that is handed down from generation to generation
 – Unceded: refers to land that was not turned over to the Crown (government) by a treaty or other agreement
Course Logistics
Finding info; finding me

• course page is font of all information
 – don’t forget to refresh, frequent updates
 – http://www.cs.ubc.ca/~tmm/courses/547-22

• email is the best way to reach me: tmm@cs.ubc.ca

• office hours Wed right after class (6:15-7:15pm)
 – or by appointment (in-person or zoom), send email to schedule
 – my office is X661 (X-Wing of ICICS/CS bldg)
 • but unlikely to catch me by dropping by, usually either in meeting or elsewhere
Delivery mechanisms

• Live: small-group work, discussion / Q&A, lecture
• Web:
 – outwards: syllabus & all instructional materials, slides, videos, project deliverables
 – inwards: gdocs for small group work
• Piazza: all asynchronous discussion, also logistics and other updates
• Canvas: all handin, some marks (simple numeric)
• email: some marks (written feedback)
Intros

- async: Piazza self-intro thread
- sync: also sign up on spreadsheet so I see who’s here (vs who’s registered)
 - will use that for breakouts today also
 - if you have privacy concerns, ok to leave off email (and/or last name) and send it to me directly
 - link on course page

http://www.cs.ubc.ca/~tmm/courses/547-22
Audience

• no formal prerequisites
 – many areas helpful but not required
 • human-computer interaction (HCI), eg CPSC 544 this term or equivalent
 • computer graphics, cognitive psychology, machine learning, statistics, algorithms, <application domain>...
 – programming skills required for most project types

• open to non-CS people
 – if no programming background, can do analysis or survey project

• communication skills in English important for success
 – substantial reading, writing, discussion, presentations

• need strength in at least one of these 3: programming, English, HCI
 – unsuccessful combination: weak ESL, weak programming, no HCI background

• open to informal auditors
 – some or all days of readings/discussion/exercises, you’ll get out of it what you put into it...
Enrollment

• don't worry if you're not registered yet, just attend and keep up
 – major churn is normal the first few weeks
 – spaces will definitely open up

• do make sure you've signed up on spreadsheet!
Schedule, big picture

• once/week, 3-6pm Wednesdays, 12 sessions
 – with short break roughly halfway through

• Sep 7, first class: today!

• no class
 – Oct 19, annual IEEE VIS conference
 – Nov 9, midterm break

• Dec 14, final presentations: afternoon, exact time TBD (2-6pm?)
• Dec 16, final reports due (8pm)
Marking

• 50% Project
 – 25% Intermediate Milestones (pass/fail)
 – so you'll get feedback along the way
 – formative not summative, goal: help you make projects the best they can be!
 – 15% Final Presentation
 – 25% Final Report
 – 60% Content

• 36% Asynchronous Readings & Online Discussion
 – 75% Comments on Readings, 25% Responses to Others
 – 4% per week, weeks 2-9; 1% per week, weeks 1 & 11; 2% per week, week 12

• 14% In-Class Participation
 – 12% In-Class Exercise Participation (12 sessions, 1% per session)
 – 2% Final Presentations Participation

• marking buckets
 – great 100%
 – good 89%
 – ok 78%
 – poor 67%
 – zero 0%
Fundamental material

• first part: read & participate [50%]
 – before class: async discussion [36%]
 • you do readings (3/week, mix of chapters & papers)
 • you submit comments before class (by Mon 1pm)
 • you respond to at least one comment from classmates (by Wed 1pm)
 – during class [14%]
 • frequent in-class work/exercises/critique
 • some lecture & discussion
Readings

• textbook
 • http://www.cs.ubc.ca/~tmm/vadbook/
 – library has free ebooks
 – to buy yourself, cheapest is amazon.com
 • hardcover bundled with ebook

• papers
 – links posted on course page
 – if DL links, use library OpenAthens from off campus

• 3 each session: mix of chapters & papers
Comments submission & marking

- written comments on reading in advance, in two rounds
- round 1 due 1pm Mon (2 days before class), 75% of comment mark
 - 1 for each reading
 - post to Piazza
- round 2 due 1pm Wed (2 hrs before class), 25% of comment mark
 - written response to at least 1 comment per session/week
- start as pass/fail marking, see how it goes
 - switch to explicit marking if quality concerns
Comments content

• comments or questions
 – **NOT** summaries

• fine to be less formal than written report
 – correct grammar and spelling still expected
 – **be concise**: one paragraph is good

• should be thoughtful, show you’ve read and reflected
 – poor to ask something trivial to look up
 – ok to ask for clarification of genuinely confusing section
 – good to show that you’re thinking carefully about what you read
 – great to point out something that I haven’t seen before

• examples on http://www.cs.ubc.ca/~tmm/courses/547-22/structure.html
Participation & missed work

• in-class group/individual exercises
• workshopping/critique for projects
• crucial part of course, attendance expected
 – tell me in advance if you’ll miss class (and why)
 • unless ill or emergency
 – written comments credit still possible if submitted in advance for async

• but if you cannot attend class (illness, quarantine, visa, other)
 – you can work through in-class exercises solo
 – inform me by private post on Piazza when done
 – UBC policy is to self-declare illness (no need for doctor note)
Pandemic mode

• masks strongly recommended indoor public spaces
 – if you eat or drink, remask between bites and sips
Projects [50%]

• groups of 2, 3, or 4
 – amount of work commensurate with group size
 – permission for solo project granted in exceptional circumstances, by petition

• stages
 – milestones along the way, mix of written & in-class
 • new last few years: formative feedback only
 • pitches (data/task), proposals, peer project reviews
 – final versions
 • final presentations (oral): Wed Dec 14, afternoon (2-6?)
 – whole dept invited, refreshments served. live talk or prerecorded video, your choice
 • final reports (written): Fri Dec 16, 8pm
 • summative written feedback for both

• resources
 – more on datasets and tools later
Projects

- **programming**
 - common case (*I will only consider supervising students who do these*)
 - four types
 - problem-driven design studies (target specific task/data)
 - technique-driven (explore design choice space for encoding or interaction idiom)
 - algorithm implementation (as described in previous paper)
 - interactive explainer (like distill articles)

- **analysis**
 - use existing tools on dataset
 - detailed domain survey
 - particularly suitable for non-CS students

- **survey**
 - very detailed domain survey
 - particularly suitable for non-CS students
Projects: Design studies

• **BYOD (Bring Your Own Data)**
 – you (or your teammates) have your own data to analyze
 • thesis/research topic
 • personal interest
 • dovetail with another course (sometimes works, but timing may be tricky)

• **FDOI (Find Data Of Interest)**
 – many existing datasets, see resource page to get started
 • http://www.cs.ubc.ca/group/infovis/resources.shtml
 – can be tricky to determine reasonable task
Project examples

• http://www.cs.ubc.ca/~tmm/courses/547-22/projectdesc.html#examp
This week

• async read only
 – Course Logistics (no comments, no responses)

• async read & comment
 – VAD Chapter 1 (comments only, no responses)
 – due Fri Sep 9 1pm

• async discuss
 – self-intros
 – due Fri Sep 9 1pm

• sync (now!)
 – logistics Q&A
 – time series exercise
 • small groups mixed with lecture / discussion
Next Time

• to read & discuss (async, before next class)
 – VAD book, Ch 2: What: Data Abstraction
 – VAD book, Ch 3: Why: Task Abstraction
 – paper: Nested Model

• round 1 comments on readings due Mon Sep 12 1pm
• round 2 responses due Wed Sep 14 1pm
Visualization
Visualization (vis) defined & motivated

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

• human in the loop needs the details
 – doesn't know exactly what questions to ask in advance
 – longterm exploratory analysis
 • *speed up* through human-in-the-loop visual data analysis
 – presentation of known results
 – stepping stone towards automation: refining, trustbuilding

• intended task, measurable definitions of effectiveness
Break

• move into small breakout groups by end of break
Exercise: Time Series
Now: In-class design exercise, in small groups

• Three time-series scenarios
 – 1: every 5 min, duration 1 year, 1 thing: building occupancy rates
 – 2: several years and several things: every 5 min, 5 years, 10 currencies
 – 3: several parameters, many things: every 5 min, 1 year, 10 params on 1000 machines

• Small-group exercise: 60+ min
 – breakout groups (4 people/group)
 – brainstorm possible visual encodings & interactions for each scenario
 – document in your group's googledoc w/ text & sketch images
 – reportback: I'll flip through googledocs, some questions for group spokesperson

• Design space examples/discussion: 15-20 min
Case 1: 3D Approach (Not Recommended)

- extruded curves: detailed comparisons impossible

[Cluster and Calendar based Visualization of Time Series Data. van Wijk and van Selow, Proc. InfoVis 99.]
Case 1: Cluster-Calendar Solution

- derived data: cluster hierarchy
- juxtapose multiple views: calendar, superimposed 2D curves

[Cluster and Calendar based Visualization of Time Series Data. van Wijk and van Selow, Proc. InfoVis 99.]
Case 1.5: Ocupado

https://youtu.be/KcwjVK8eUdw
Case 2: ChronoLenses

https://youtu.be/k7pI8ikczqk
Other Case (compare 2) : Stack Zooming

https://youtu.be/dK0De4XPm5Y

Case 3: LiveRAC

http://youtu.be/Id0c3H0VSkw