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¢ Properties and Measures



Drawing Properties

This talk:

®Stress

®Neighborhood Preservation

More in the paper:

® \/ertex Resolution

|deal Edge Length

Crossing Number

Crossing Angle Maximization
Angular Resolution

Aspect Ratio

Gabriel Graph Property



Stress

® Quality measure & loss function:

Ly =Y, wi(|1X; — X;|, — dj)*

i<j

® w;; - Normalizing term, we take w;; = di—jz

dl-j - Graph theoretical distance

X; - coordinate of Lth node in the layout

* Observation:

Lqr is a differentiable function of the layout X

Kamada and Kawai: An algorithm for drawing general undirected graphs. Information
Processing Letters 31(1), 7 — 15 (1989) 4



Stress

* Observation:

Lg7 is a differentiable function of the layout X

=> Optimizable via gradient descent

for k in range(max_iter):
Ly =Y, wi(IX; — X;|, — d;)?
i<j

X=X—€'VxLST




In general:

® « \We find a loss function that is differentiable with respect to the layout X.

* If the original criterion is noft differentiable, we find a surrogate function.




Neighborhood Preservation

( Intuition)

Bad Neighborhood Preservation Good Neighborhood Preservation

Neighbors in layout # Neighbors in graph Neighbors in layout = Neighbors in graph
{a, 020, ,} {0 y={, ,1



Neighborhood Preservation

(Goal & Quality measure)

* Quality Measure (the I@er, the better):

Onp = Jaccard*ex (K, )

— HG@):Kij=1amFRdj;j=1}|

K - k-NN Matrix

k; - (Chosen to be) the degree of node [

- Adjacency Matrix

* Goal:

.-NN Matrix ( K ) = Adjacency Matrix (

Kruiger et al.: Graph layouts by t-SNE. Comput. Graph. Forum36(3), 283-294 (2017)
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Neighborhood Preservation
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Neighborhood Preservation

(Goal & Quality measure)

* Goal/ Intuitim‘

.-NN Matrix ( K ) = Adjacency Matrix ( )
* Quality Measure (the higher, the better):

) = 1{(i.)):Kij=1andAdj;j=1}|

= Jaccard Index (K
QNP ( 1 |{(i'j):Kij=10rAdjij=1}|

@ Notation: f

k; - chosen to be the degree of node [

- ground truth, constant

K - layout-dependent, but not (yet) differentiable

Kruiger et al.: Graph layouts by t-SNE. Comput. Graph. Forum36(3), 283-294 (2017)
1
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Neighborhood Preservation

(Making K differentiable)
k-NN Matrix (K) = Adjacency Matrix (Ad)) e.g. k=2 4

distance to the k™ nfrest neighbor of node i

din, +di n, S 5
B {<|Xix.j||%> £ 7

“7 o if § = j e,
- - o

® K; j is differentiable function of X; and X; v
® K;j = 0if node j is one of the k nearest neighbors of node i

® K;;j < 0 otherwise

Kruiger et al.: Graph layouts by t-SNE. Comput. Graph. Forum36(3), 283-294 (2017)
1
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Neighborhood Preservation

(Making K differentiable)

@yp = Jaccard Index (K, )

distance fo the k" nearest neighbor of node i

di.w,+di.7r, S i
K, = { —UXi = Xl - —=—) ifi #
Y10 if § = j

o K. . is differentiahle fiinction of X: and X:

® K;;j = 0ifnode jis one of the k nearest neighbors of node i

®K;; < 0 otherwise



Neighborhood Preservation

(Relax Jaccard Index)

L E.g. Adj=(1,0)

Berman et al.: The Lovasz-softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in
neural networks. In: Proceedings of the IEEE Conference on CO(quter Vision and Pattern Recognition. pp. 4413-4421 (2018)



In general:

differentiable

® If the original criterion is not differentiable, we find a surrogate

function.
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Vertex Resolution

® (Goal / Intuition:

Distribute nodes evenly

® Quality measure (higher the better):
Q _ min,y; ||X;—X;||
VE maxey || X=X, || Jret,

* |Loss function:

For any target resolution 7 € [0,1]

[1X:—=X; ||

Lyg = ZiJeV,i;éj [ReLU(1 - PG )1°

* Wetaker:=

JIvi

—_



mini;éj 1€ —Xj [

Vertex Resolution (cont.) 2w = o m =

* Loss function:

For any target resolution 7 € [0,1]

11X —X; || 2
Lygr = Y jey,iz; [ReLU(1 — )]

Target Resolution

°
* Wetaker: =

ik

—_



Seven more, details in the paper

) o v 2§ 45—

@ 3

Vertex Resolution Crossing Angle Maximization Aspect Ratio

Gabriel Property Ideal Edge Length Angular Resolution Crossing Number

Graph Drawing via Gradient Descent, (GD)? by Reyan Ahmed, Felice De Luca, Sabin Devkota, Stephen Kobourov and Mingwei Li https:/arxiv.org/abs/2008.05584




Total Loss
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dodecahedron v
Quality Measure
(the higher, the better)
[ Stress 0.40
®
i Vertex Resolution 0.25
®
s Edge Uniformity 0.00
®
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D
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®
i ANgular Resolution 0.00
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®
[ Gabriel 0.00
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Learning Rate: 0.4493

Momentum: 0.45
®
Live demo:

http://hdc.cs.arizona.edu/~mwli/graph-drawing
/
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e Conclusions
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Discussion?



Conclusion

® \We proposed a general framework, (GD)?,

that optimizes multiple drawing criteria
for graph layouts.

® To optimize multiple criteria jointly, we take
a weighted sum of individual loss

functions.
® For h criterion ith Himi it Live demo:
or each criterion, we erther optimize | http://hdc.cs.arizona.edu/~mwli/graph-drawing
directly or find a surrogate loss function if /
the criterion is not differentiable. Paper (arXiv): https://arxiv.org/abs/2008.05584

Graph Drawing via Gradient Descent, (GD)?

by Reyan Ahmed (abureyanahmed@email.arizona.edu),
Felice De Luca, Sabin Devkota, Stephen Kobourov and
Mingwei Li (mwli@email.arizona.edu)
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