i-ViDa: An interactive visualization tool for DNA reaction trajectories

Chenwei Zhang & Yibo Jiao
What is DNA hybridization?

The fundamental ingredient in the self-assembly of DNA nanostructures and in the operation of DNA nanomachines is the hybridization of single-stranded DNA to form duplexes.

Gif cites from https://www.youtube.com/watch?v=0qoqzErrae4
Why DNA trajectories?

Help to understand mechanisms of DNA reaction kinetics.
Further make contributions to DNA nanotechnologies, such as DNA computing, DNA robots, and etc.

The goal

Visualize different reaction pathways laying out on the top of the energy landscape.
Each simulation generates a different pathway.
How to visualize them on a energy map to get a sense of which reaction is fast, where the reaction stuck, and why it fails ...

Gif cites from https://maps.tnc.org/migrations-in-motion/#4/19.00/-78.00
Datasets
Dataset

Secondary structure notation
- Item 1: `(..)(((.. + ..)))((..)).` float float
- Item 2: `..((((.. + ..)))...))`. float float
- (hundreds of thousands items)
- `...` ...

Energy and Average reaction time

<table>
<thead>
<tr>
<th>Trajectory</th>
<th>Index</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>list: <code>[1,4,6,9,...]</code></td>
<td>list: <code>[float, float, ...]</code></td>
</tr>
<tr>
<td>2</td>
<td>list: <code>[0,1,6,8,...]</code></td>
<td>list: <code>[float, float, ...]</code></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

(hundred of trajectories)
Vis Tool Design
Scatter Plot + Graph for DNA States

1. Graph
 a. Node - DNA state (secondary structure)
 b. Edge - Elementary step
 c. Path - Reaction trajectory

2. Layout: scatter plot - reduced into 2D
 a. Add time slider
 b. Animation

3. Concerns:
 a. Efficiency - Scalability
 b. Technique - Visualizing flows (svg?canvas?)
Algorithm of Visualizing DNA Structure

Current methods of visualizing DNA structures:

- Focused on single-strand DNA
- No interaction, return a image display

Our goal:

- Develop a standard algorithm of visualizing multiple-strand DNA with interaction
- Input DP(text) -> Output vis