Plan for today
- small group exercises
 - Complexity Families
- last week reading Q&A
 - paper: Polaris
- this week reading Q&A
 - chap: Manipulate Interactive, Multiple Views, paper: Scalable Insets
- reminder: post-class office hours
 - if you want discussion of your project proposal feedback ASAP
 - faster than waiting for my written comments

Upcoming
- next week (W10): reading week, no class, no readings, no async discussion
 - work on projects!
- week after (W11)
 - light: async reading/discussion (note updated web page)
 - 1 reading: Ch. 13: Reduct
 - due Thu 3pm: project updates
 - in class: post-update meetings with Tamara
 - small group exercises
 - first A critiques B; then B critiques A
 - read other team’s written update before class
 - in class: mini-lecture
 - in class: post-update meetings with Tamara

How to handle complexity: 1 previous strategy
- derive new data to show within view
 - why: find extreme values, trends
 - change view over time
 - facet across multiple views

Idiom: Change parameters
- widgets and controls
 - sliders, buttons, radio buttons, checkboxes, dropdowns/comboboxes
- pros
 - clear affordances, self-documenting (with labels)
- cons
 - uses screen space
- design choices
 - separated vs interleaved
 - controls & canvas

Idiom: Change order/arrangement
- what: simple table
- how: data-driven reordering by selecting column
- why: find extreme values, trends

Upcoming
- week after that (W12)
 - async last week reading / discussion
 - Ch. 14: Designed Focus/Context
 - last week of readings / discussion
 - last week of classes (W13)
 - faster than waiting for my written comments

How to handle complexity: 1 previous strategy + 2 more

Idiom: Change alignment
- stacked bars
 - easy to compare
 - first segment
total bar
 - align to different ...
 - aggregation level, what is filtered...
 - interaction entails change
 - powerful & flexible

Idiom: Re-encode
- derive new data to show within view
 - why: find correlations between attributes
 - system: DataStripes
 - stacked bars
 - easy to compare
 - first segment
total bar
 - align to different segment
 - supports flexible comparison

Idiom: Reorder
- what: table with many attributes
- why: find correlations between attributes
 - system: LineUp
 - aligned segments
 - supports flexible comparison

Idiom: Change order/arrangement
- what: simple bar
- how: data-driven reordering by selecting column
- why: find extreme values, trends

Idiom: Change parameters
- widgets and controls
 - sliders, buttons, radio buttons, checkboxes, dropdowns/comboboxes
- pros
 - clear affordances, self-documenting (with labels)
- cons
 - uses screen space
- design choices
 - separated vs interleaved
 - controls & canvas

Visualization Analysis & Design
Interactive Views (Ch 11/12)

Tamara Munzner
Department of Computer Science
University of British Columbia
@tamaramunzner
Navigate: Changing viewpoint/visibility

- change viewpoint
 - changes which items are visible within view
- camera metaphor
 - pan/translate/scroll
- pan/translate/scroll
- constrained navigation
- unconstrained navigation

Selection

- selection: basic operation for most interaction
- design choices
 - how many selection types?
- interaction technology

Highlighting

- highlight change visual encoding for selection targets
- visual feedback closely tied to but separable from selection
- changes which items are visible within view

Manipulate

- animated transition
 - network drilldown/rollup
- change viewpoint
 - changes which items are visible within view

Interaction technology

- what do you design for?
- mouse & keyboard on desktop?
- large screens, hover, multiple dots
- touch interaction on mobile?
- small screens, no hover, just tap
- gestures from video / sensors?
- ergonomic reality vs movie bombst
- eye tracking?

Idiom: Animated transitions - visual encoding change

- smooth transition from one state to another
 - alternative to jump cuts, supports item tracking
 - best case for animation
 - staging to reduce cognitive load

Idiom: Animated transition - tree detail

- animated transition
 - network drilldown/rollup

Idiom: Animated transition + constrained navigation

- example: geographic map
 - simple zoom, only viewpoint changes, shapes preserved

Navigate: Changing viewpoint/visibility

- change viewpoint
 - changes which items are visible within view
- camera metaphor
 - pan/translate/scroll

Navigate: Unconstrained vs constrained

- unconstrained navigation
 - easy to implement for designer
 - hard to control for user
 - easy to overemphasize/underemphasize
- constrained navigation
 - typically uses animated transitions
 - trajectory automatically computed based on selection
 - just click; selection ends up framed nicely in final viewpoint

Navigate: Changing viewpoint/visibility

- how: navigate page by scrolling (panning down)
- pros:
 - familiar & intuitive, from standard web browsing
 - linear (only up/down) vs possible overload of click-based interface choices
- cons:
 - full-screen mode may lack affordances
 - scrolling/panning without direct access
 - unexpected behaviour
 - continuous control for discrete steps

Interaction benefits

- interaction pros
 - major advantage of computer-based vs paper-based visualization
 - flexible, powerful, intuitive
 - exploratory data analysis: change as you go during analysis process
 - fluid task switching: different visual encodings support different tasks
 - animated transitions provide excellent support
 - empirical evidence that animated transitions help people stay oriented

Interaction limitations

- interaction has a time cost
 - sometimes minor, sometimes significant
 - degrades to human-powered search in worst case
- remembering previous state imposes cognitive load
- controls may take screen real estate
 - or invisible functionality may be difficult to discover (lack of affordances)
- users may not interact as planned by designer
 - NYTimes logs show ~90% don’t interact beyond scroll (Ansch, 2016)
Interactive Views (Ch 11/12)

Tamara Munzner
Department of Computer Science
University of British Columbia
@tamaramunzner

Visualization Analysis & Design

How to handle complexity: 1 previous strategy + 2 more

- Derive
- Manipulate
- Juxtapose
- Change
- Partition
- Navigate
- Superimpose
- Select
- Multiple views
- Coordinate Multiple Side By Side Views
- Embed

Facet

Juxtapose benefit

Different interaction idiom

- encoding: same or different
- data: subset shared
- navigation: shared
- unidirectional vs bidirectional linking
- other differences
- (window size)

Facet

Juxtapose views: tradeoffs

- Juxtapose costs
- display area
- 2 views side by side; each has only half the area of one view

- Juxtapose benefits
- cognitive load: eyes vs memory
- lower cognitive load: more eyes between 2 views
- higher cognitive load: compare single changing view to memory of previous state

Linked views: Directionality

- unidirectional vs bidirectional linking
- bidirectional almost always better!

Small multiples

- encoding: same
- data: none shared
- items or attributes
- ex: stock prices for different companies

How?

- Encode Manipulate Facet Reduce
- Arrange
- Map
- Change
- Select
- Navigate
- Superimpose

Why?

- What?
- How?
- Why?

Linked highlighting

- see how regions contiguous in one view are distributed within another
- powerful and pervasive interaction idiom

- encoding: different
- data: all shared
- all items shared
- different attributes across the views
- aka brushing and linking

Linked views: Directionality

- unidirectional vs bidirectional linking
- bidirectional almost always better!
View coordination: Design choices

<table>
<thead>
<tr>
<th>Data</th>
<th>All</th>
<th>Sub</th>
<th>Main</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Idiom: Reorderable lists

- Set views
 - easy navigation
 - content visible in other views
- many views in one vs free movement
- open research questions

System: Improvise

Facet

- Juxtapose
- Partition
- Superimpose

Partition into views

- how to divide data between views
- split into regions by attributes
- encodes association between items using spatial proximity
- other methods have major implications for what patterns are visible

Partitioning: Recursive subdivision

- different encoding for second-level regions
- choropleth maps
- superimposed layers
- layer: set of objects spread out over region
 - each set is visually distinguishable group
 - entire view
- design choices
 - how many layers, how to distinguish?
 - concurrency with different, non-overlapping channels
 - two layers achievable, three with careful design
 - small or dynamic from many possible?

Static visual layering

- foreground layer: roads
- hue, size distinguishes man from mirror
- high luminance contrast from background
- background layer: regions
- desaturated colors for water, parks, land areas
- user can selectively focus attention

Superimposing limits (static)

- superimpose within same frame
 - color code by year
- partitioning
 - split by site, rows are barley varieties
- main-effects ordering
 - derive value of median for group
 - order rows within view by variety median
 - order views themselves by site median

Dynamic visual layering

- interactive, based on selection
- one-hop neighbour highlighting
 - click (heavyweight) hover (fast)