Plan for today
- small group exercises
 - Complexity Families
- last week reading Q&A
 - paper: Polars
 - this week reading Q&A
 - chap Manipulate Interactive, Multiple Views, paper: Scalable Insets
- reminder: post-class office hours
 - if you want discussion of your project proposal feedback ASAP
 - faster than waiting for my written comments

Upcoming
- next week (W10): reading week, no class, no readings, no async discussion
 - work on projects!
- week after (W11)
 - light: async reading/discussion (note updated web page)
 - 1 reading: Ch 13, Redux
 - due Tue 3pm: project updates
 - in class project peer reviews
 - each team will be reached with one other
 - read other team’s written update before class
 - first A critiques B & then B critiques A
 - record discussion/thoughts in gdoc
 - in class: mini-lecture

Visualization Analysis & Design
Interactive Views (Ch 11/12)

How to handle complexity: 1 previous strategy
- derive new data to show within view

Idiom: Re-encode
- stacked bars
 - easy to compare
 - first segment
 - total bar
 - align to different segments...

Idiom: Reorder
- what: table with many attributes
 - how: data-driven reordering by selecting column
 - why: find correlations between attributes

Idiom: Change order/arrangement
- what: simple table
 - how: data-driven reordering by selecting column
 - why: find extreme values, trends

Idiom: Change parameters
- widgets and controls
 - sliders, buttons, radio buttons, checkboxes, dropdowns/combos/drag
- cons
 - clear affordances, self-documenting (with labels)

Manipulate View

How to handle complexity: 1 previous strategy + 2 more
- derive new data to show within view
- change view over time
 - facet across multiple views

Idiom: Change order/arrangement
- what: simple table
 - how: data-driven reordering by selecting column
 - why: find extreme values, trends

Idiom: Change parameters
- widgets and controls
 - sliders, buttons, radio buttons, checkboxes, dropdowns/combos/drag
- cons
 - clear affordances, self-documenting (with labels)

Hue

Department of Computer Science
University of British Columbia
@tamaramunzner

Information Visualization
Manipulate Interactive, Facet into Multiple, Scalable Insets
Ex: Complexity Families
Tamara Munzner
Department of Computer Science
University of British Columbia
Week 7, 3 Nov 2021
https://www.cs.ubc.ca/~tmm/courses/547-21
Information Visualization
Manipulate Interactive, Facet into Multiple, Scalable Insets
Ex: Complexity Families
Tamara Munzner
Department of Computer Science
University of British Columbia
Week 7, 3 Nov 2021
https://www.cs.ubc.ca/~tmm/courses/547-21
Idiom: Animated transitions

- **smooth transition from one state to another**
 - alternative to jump cuts, supports item tracking
 - less case for animation
 - staging to reduce cognitive load

- **example: geographic map**
 - simple zoom, only viewport changes, shapes preserved

- **[Zoom to Bounding Box](https://observablehq.com/@d3/zoom-to-bounding-box)**

Idiom: Animated transition - tree detail

- **an animated transition**
 - network drilldown/rollup

Idiom: Highlighting

- **highlight change visual encoding for selection targets**
 - design choices:
 - feedback closely tied to but separable from selection (interaction)
 - design choices: typical visual channels
 - change stroke color
 - hot dots (existing outline coding)
 - add outline mark
 - change size (ex: increase outline mark width)
 - change shape (ex: from solid to dashed line for link mark)

- **unusual channels: motion**
 - motion usually avoids single view
 - with multiple views, could justify to draw attention to other views

Idiom: Scrollytelling

- **how:** navigate page by scrolling (panning down)

Navigate: Changing viewpoint/visibility

- **change viewpoint**
 - changes which items are visible within view

Navigate: Unconstrained vs constrained

- **unconstrained navigation**
 - easy to implement for designer
 - hard to control for user
 - easy to overshadow/underwhelm

- **constrained navigation**
 - typically uses animated transitions
 - trajectory automatically computed based on selection
 - just click; selection ends up framed nicely in final viewport

Idiom: Animated transition + constrained navigation

- **example: geographic map**
 - simple zoom, only viewport changes, shapes preserved

Navigate: Changing attributes

- **continuation of camera metaphor**
 - **place**
 - show only items matching specific value for given attribute during plane
 - **selection**
 - show only items on or next to plane from camera
 - **project**
 - change mathematics of image creation

Interaction technology

- **what do you design for?**
 - mouse & keyboard on desktop?
 - touch screen on mobile?

- **pros & cons**
 - large screens, hover, multiple clicks
 - touch interaction on mobile?
 - small screens, no hover, just tap

Interaction benefits

- **interaction pros**
 - major advantage of computer-based vs paper-based visualization
 - small footprint allows animated transitions provide excellent support

- **empirical evidence that animated transitions help people stay oriented**

Interaction limitations

- **interaction has a time cost**
 - sometimes minor, sometimes significant
 - degrades to human-powered search in worst case

- **remembering previous state imposes cognitive load**

- **controls may take screen real estate**
 - or invisible functionality may be difficult to discover (lack of affordances)

- **users may not interact as planned by designer**
 - NYTimes logs show ~90% don’t interact beyond scrollytelling - Aisch, 2016