Visualization Analysis & Design

Color (Ch 10)

Channels

- **Magnitude Channels**: Ordered attributes (Identity Channels: Categorical attributes)
- **Color channels**: Limited number of discriminable bins
- **Shape**: Limited number of discriminable bins

Decomposing color

- First rule of color: do not (just) talk about color!
 - Color is confusing if treated as monolithic
 - Decompose into three channels:
 - Ordered can show magnitudes
 - Luminance: how bright (BW)
 - Saturation: how colorful
 - Hue: what color

- First rule of color: do not (just) talk about color!
 - Color is confusing if treated as monolithic
 - Decompose into three channels:
 - Ordered can show magnitudes
 - Luminance: how bright (BW)
 - Saturation: how colorful
 - Hue: what color

Categorical vs ordered color

- Human perception built on relative comparisons
- Great if color contiguous

Categorical color: limited number of discriminable bins

- Human perception built on relative comparisons
- Great if color contiguous

Decomposing color

- First rule of color: do not (just) talk about color!
 - Color is confusing if treated as monolithic
 - Decompose into three channels:
 - Ordered can show magnitudes
 - Luminance: how bright (BW)
 - Saturation: how colorful
 - Hue: what color

- First rule of color: do not (just) talk about color!
 - Color is confusing if treated as monolithic
 - Decompose into three channels:
 - Ordered can show magnitudes
 - Luminance: how bright (BW)
 - Saturation: how colorful
 - Hue: what color

Idiom design choices: Beyond spatial arrangement

- How?
- Encode Manipulate Facet ...
- Why?
- What?
- How?
- Why?

Idiom design choices: Visual encoding

- Arrange Express Separate
- Order Align
- Use

Plan for today

- Last week reading Q&A
 - Tables, LineUp, Bertifier
- Small group exercises
 - Two Numbers
 - Break
 - Color
- This week reading Q&A
 - Color, ArteryViz, Rainbows Revisted

Next week

- To read & discuss (async, before next class)
 - VAD book, Ch 9: Networks and Trees
 - Paper: Glyphs Explorer (design study)
 - Pre-proposal meetings
- 11/1/21 full class slot plus some extra slots
 - Exact timing TBD when I see final number of groups (10-15 min)
 - Stay tuned on Plaza for signup link.

Q&A / Backup Slides

Channels: What’s up with color?

- First rule of color: do not (just) talk about color!
 - Color is confusing if treated as monolithic
 - Decompose into three channels:
 - Ordered can show magnitudes
 - Luminance: how bright (BW)
 - Saturation: how colorful
 - Hue: what color

- First rule of color: do not (just) talk about color!
 - Color is confusing if treated as monolithic
 - Decompose into three channels:
 - Ordered can show magnitudes
 - Luminance: how bright (BW)
 - Saturation: how colorful
 - Hue: what color

- Channels have different properties
 - What they convey directly to perceptual system
 - How much they can convey
 - How many discriminable bins can we use?
Interaction between channels: Not fully separable

- color channel interactions
 - hue heavily affects value
 - small regions need high saturation
 - large regions need low saturation
- saturation & luminance
 - not separable from value
 - also not separable from transparency

Categorical color: limited number of discriminable bins

- human perception built on relative comparisons
 - great if color contiguous
 - surprisingly bad for absolute comparisons
- noncontiguous small regions of color
 - fewer bins than you want
 - rule of thumbs 6-12 bins, including background and highlights

Ordered color: Rainbow is poor default

- problems
 - perceptually unordered
 - perceptually nonlinear
- benefits
 - fine-grained structure visible and nameable
 - alternatives
 - large-scale structure fewer hues

Viridis / Magma: sequential colormaps

- monotonically increasing luminance, perceptually uniform
 - K. Phuus, D3
- benefits
 - fine-grained structure visible and nameable
 - alternatives
 - large-scale structure fewer hues

Sequential

- large-scale structure: fewer hues

Diverging

- large-scale structure: fewer hues

Bivariate

- large-scale structure: fewer hues

Color Palettes

- categorical
 - aim for maximum distinguishability
 - aka qualitative, nominal
Opponent color and color deficiency

- perceptual processing before optic nerve
- one achromatic luminance channel (L*)
- red-green (a*) & yellow-blue axis (b*)
- fine-grained detail only visible through luminance contrast
- legible text requires luminance contrast!

Color palette design considerations: univariate

- segmented
- diverging
- sequential
- categorical

- continuous
- diverging or sequential or cyclic
- single-hue or two-hue or multi-hue
- perceptually linear?
- ordered by luminance?
- colorblind safe?

Visualization Analysis & Design

Color (Ch 10) II

Tamara Munzner
Department of Computer Science
University of British Columbia
@tamaramunzner

Opponent color and color deficiency

- perceptual processing before optic nerve
- one achromatic luminance channel (L*)
- edge detection through luminance contrast
- legible text requires luminance contrast!
- one achromatic luminance channel (L*)
- edge detection through luminance contrast
- 2 chroma channels
- red-green (a*) & yellow-blue axis (b*)
- colorblind:
 - degrading acuity, one axis
 - 8% of men are red-green color deficient
 - blue/yellow is rare

Decomposing color

- decompose into three channels
 - ordered can show magnitude
 - luminance how bright (B)
 - saturation how colorful
 - categorical can show identity
 - hue what color

Color palette design considerations: univariate

- color palettes: univariate
- categorical
 - continuous
- diverging
 - sequential
 - ordered
 - sequential
- bivariate
 - categorical
 - continuous
 - diverging

Color palettes: univariate

- ordered
- sequential
- diverging
- categorical

Color maps: bivariate

- ordered
- sequential
- diverging
- categorical

Luminance

- need luminance for edge detection
 - fine-grained detail only visible through luminance contrast
 - legible text requires luminance contrast!

Color palettes: categorical

- red
- green
- blue
- yellow

Opponent color and color deficiency

- one achromatic luminance channel (L*)
- edge detection through luminance contrast
- 2 chroma channels
- red-green (a*) & yellow-blue axis (b*)

Designing for color deficiency: Check with simulator

- redundancy encode
 - vary luminance
 - change shape

Color deficiency: Reduces color to 2 dimensions

- Normal
- Deuteranope
- Protanope
- Tritanope

Designing for color deficiency: Avoid encoding by hue alone

- a with Apple Store
- b with Apple Store

Color Encoding

- hue
- saturation
- luminance

Designing for color deficiency: Blue-Orange is safe.
HSL/HSV
• HSL/HSV: somewhat better for encoding
 – hue/saturation wheel intuitive
• saturation
 – in HSV (single-cone) desaturated = white
 – in HSL (dual-cone) desaturated = grey
• luminance vs saturation
 – channels not very separable
 – typically not crucial to distinguish between these with encoding/decoding
 – key point is hue vs luminance/saturation

Many color spaces
• Luminance (L*), hue (H), saturation (S)
 – good for encoding
 – but not standard graphics/tools colorspace
• RGB: good for display hardware
 – poor for encoding & interpolation
• CIE LAB (L*a*b*): good for interpolation
 – hard to interpret, poor for encoding
 – HSL/HSV somewhat better for encoding
 – hue/saturation wheel intuitive
 – beware: only pseudo-perceptual!
 – lightness (L) or value (V) ≠ luminance (L*)

Interaction with the background
• marks with high luminance on a background with low luminance
• marks with medium luminance on a background with high luminance
• change luminance of marks depending on background

Color/Lightness constancy: Illumination conditions

Bezold Effect: Outlines matter
• given L, a*, b*, can we tell what color it is?
 – no, it depends
 – chromatic adaptation
 – luminance adaptation
 – simultaneous contrast
 – spatial effects
 – viewing angle
 – …

Color Appearance
• Color naming
Color naming

- Nameability affects
 - Communication
 - Memorability
- Can integrate into color models
 - In addition to perceptual considerations

Color is just part of vision system

- Does not help perceive
 - Position
 - Shape
 - Motion
 -...

Map other channels

- Size
 - Aligned length best
 - Length accurate
 - 2D area ok
 - 3D volume poor
- Shape
 - Complex combination of lower-level primitives
 - Many bins
- Motion
 - Highly separable against static
 - Great for highlighting (binary)
 - Use with care to avoid irritation