Information Visualization
Marks & Channels, Rules of Thumb
Design Study Methodology
Ex: Decoding

Tamara Munzner
Department of Computer Science
University of British Columbia

Week 3, 22 Sep 2021

https://www.cs.ubc.ca/~tmm/courses/547-21
Logistics

• new room! (FSC 2330)
 – if door isn't unlocked, DFP admins on 3rd floor can open (FSC 3641)
 – to hear about Designing for People seminars
 • https://dfp.ubc.ca/about/contact for signups
 • next seminar is from new-ish BC visualization prof!
 Oct 13 12-1
 Charles Perrin, UVic
 The case for more flexible data visualization interfaces
Plan for today

• 45 min: Marks & Channels
 – mini-lecture
 – examples & discussion
 – further Q&A

• 30 min: Rules of Thumb, Design Study Methodology
 – further Q&A

• 5 min: upcoming
 – next week: async reading, sync project pitches

• (break)

• 75 min small groups exercise: Decoding
 – 45 min: breakout groups
 – 30 min: reportbacks
Mini-Lecture
Marks and channels

• marks
 – basic geometric elements

• channels
 – control appearance of marks
Channels: Rankings

Magnitude Channels: Ordered Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Expressiveness</th>
<th>Effectiveness</th>
<th>Distinguishability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position on common scale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position on unaligned scale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length (1D size)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tilt/angle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area (2D size)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (3D position)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color luminance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color saturation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curvature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume (3D size)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Redundant encoding

• multiple channels
 – sends stronger message
 – but uses up channels

Length, Position, and Value
Marks: Constrained vs encodable

• math view: geometric primitives have dimensions
 – Points: 0D
 – Lines: 1D
 – Areas: 2D

• constraint view: mark type constrains what else can be encoded
 – Points: 0 constraints on size, can encode more attributes w/ size & shape
 – Lines: 1 constraint on size (length), can still size code other way (width)
 – Areas: 2 constraints on size (length/width), cannot size code or shape code
 • interlocking: size, shape, position

• quick check: can you size-code another attribute, or is size/shape in use?
Grouping

- containment
- connection

Marks as Links

- Containment
- Connection

Identity Channels: Categorical Attributes

- Spatial region
- Color hue
- Motion
- Shape

- same spatial region
- same values as other categorical channels
Marks for links

Connection

Containment

Containment can be nested

[Untangling Euler Diagrams, Riche and Dwyer, 2010]
Examples
Quiz: Name those marks & channels

- A: Shooting Media Coverage

https://twitter.com/MonaChalabi/status/1158779046693679106?s=20
Quiz: Name those marks & channels

• B: Tax Rates

Quiz: Name those marks & channels

• C: Sunsqatch

https://flowingdata.com/2017/08/20/sunsquatch-the-only-eclipse-map-you-need/
Quiz: Name those marks & channels

- D: UFC fights

Analyzing marks

• what type of mark?
 – line?
 • no, not length coded
 – point mark with rectangular shape?
 • yes!
 – area?
 • no, area/shape does not convey meaning

Quiz: Name those marks & channels

- E: Alpen Forest Fires

Burned area in hectares on the southern side of the Alps

Source: Swiss fire forest database

Quiz: Name those channels

• F: Netherlands Commuters

Quiz: Name that mark

• G: Yet More Alpen Forest Fires

Most forest fires in Switzerland occur on the southern side of the Alps.

Annual number of forest fires between 1990 and 2014

- < 1 Waldbrand
- 1-2
- 2-3
- 3-5
- 5-15
- > 15

Source: Climate Change Forest, Proença et al. 2010

NZZ (art.

Quiz: Name those marks & channels

• H: More Alpen Forest Fires

Monthly distribution of forest fires in the Alpine regions caused by,

- den Menschen
- Blitzschläge
- unbekannt

Alpensüdseite

Andere Alpengebiete

Average numbers in the period 2000-2018
Source: Swissfire forest fire database

Q&A/Backup Slides
Marks and Channels
Visual encoding

• how to systematically analyze idiom structure?
Visual encoding

• how to systematically analyze idiom structure?
Visual encoding

• how to systematically analyze idiom structure?

• marks & channels
 – marks: represent items or links
 – channels: change appearance of marks based on attributes
Marks for items

• basic geometric elements

• 3D mark: volume, rarely used
Marks for links

- Containment
- Connection

vialab.science.uoit.ca/portfolio/bubblesets
Containment can be nested

[Untangling Euler Diagrams, Riche and Dwyer, 2010]
Channels

• control appearance of marks
 – proportional to or based on attributes

• many names
 – visual channels
 – visual variables
 – retinal channels
 – visual dimensions
 – ...

- Position
 - Horizontal
 - Vertical
 - Both

- Color

- Shape

- Tilt

- Size
 - Length
 - Area
 - Volume
Definitions: Marks and channels

• marks
 – geometric primitives

- Points
- Lines
- Areas
Definitions: Marks and channels

• marks
 – geometric primitives

• channels
 – control appearance of marks
Definitions: Marks and channels

• marks
 – geometric primitives

• channels
 – control appearance of marks

• channel properties differ
 • type & amount of information that can be conveyed to human perceptual system
Visual encoding

• analyze idiom structure as combination of marks and channels
Visual encoding

• analyze idiom structure as combination of marks and channels

1: vertical position

mark: line
Visual encoding

• analyze idiom structure as combination of marks and channels

1: vertical position
mark: line

2: vertical position
horizontal position
mark: point
Visual encoding

• analyze idiom structure as combination of marks and channels

1: vertical position
mark: line

2: vertical position
horizontal position
mark: point

3: vertical position
horizontal position
color hue
mark: point
Visual encoding

- analyze idiom structure as combination of marks and channels

1: vertical position
mark: line

2: vertical position
horizontal position
mark: point

3: vertical position
horizontal position
color hue
mark: point

4: vertical position
horizontal position
color hue
size (area)
mark: point
Redundant encoding

• multiple channels
 – sends stronger message
 – but uses up channels

Length, Position, and Luminance
Marks as constraints

- math view: geometric primitives have dimensions

Points (0D) → Lines (1D) → Interlocking Areas (2D)
Marks as constraints

• math view: geometric primitives have dimensions
 - Points: 0D
 - Lines: 1D
 - Interlocking Areas: 2D

• constraint view: mark type constrains what else can be encoded
 - points: 0 constraints on size, can encode more attributes w/ size & shape
 - lines: 1 constraint on size (length), can still size code other way (width)
 - interlocking areas: 2 constraints on size (length/width), cannot size or shape code
 - interlocking: size, shape, position
Marks as constraints

- **math view**: geometric primitives have dimensions
 - Points (0D)
 - Lines (1D)
 - Interlocking Areas (2D)

- **constraint view**: mark type constrains what else can be encoded
 - Points: 0 constraints on size, can encode more attributes w/ size & shape
 - Lines: 1 constraint on size (length), can still size code other way (width)
 - Interlocking areas: 2 constraints on size (length/width), cannot size or shape code
 - Interlocking: size, shape, position

- **quick check**: can you size-code another attribute
 - or is size/shape in use?
Scope of analysis

• simplifying assumptions: one mark per item, single view

• later on
 – multiple views
 – multiple marks in a region (glyph)
 – some items not represented by marks (aggregation and filtering)
When to use which channel?

expressiveness
match channel type to data type

effectiveness
some channels are better than others
Channels: Rankings

Position on common scale
Position on unaligned scale
Length (1D size)
Tilt/angle
Area (2D size)
Depth (3D position)
Color luminance
Color saturation
Curvature
Volume (3D size)

Spatial region
Color hue
Motion
Shape
Channels: Rankings

Magnitude Channels: Ordered Attributes

- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)
- Color luminance
- Color saturation
- Curvature
- Volume (3D size)

Identity Channels: Categorical Attributes

- Spatial region
- Color hue
- Motion
- Shape

- **expressiveness**
 - match channel and data characteristics
Channels: Rankings

Magnitude Channels: Ordered Attributes

- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)
- Color luminance
- Color saturation
- Curvature
- Volume (3D size)

Identity Channels: Categorical Attributes

- Spatial region
- Color hue
- Motion
- Shape

Attribute Types

- Categorical
- Ordered
- Ordinal
- Quantitative

• expressiveness
 - match channel and data characteristics
 - magnitude for ordered
 - how much? which rank?
 - identity for categorical
 - what?
Channels: Rankings

Magnitude Channels: Ordered Attributes

- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)
- Color luminance
- Color saturation
- Curvature
- Volume (3D size)

Identity Channels: Categorical Attributes

- Spatial region
- Color hue
- Motion
- Shape

- **expressiveness**
 - match channel and data characteristics
- **effectiveness**
 - channels differ in accuracy of perception
Channels: Rankings

Magnitude Channels: Ordered Attributes

- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)
- Color luminance
- Color saturation
- Curvature
- Volume (3D size)

Identity Channels: Categorical Attributes

- Spatial region
- Color hue
- Motion
- Shape

• expressiveness
 - match channel and data characteristics

• effectiveness
 - channels differ in accuracy of perception
 - spatial position ranks high for both
Channel effectiveness

• accuracy: how precisely can we tell the difference between encoded items?
• discriminability: how many unique steps can we perceive?
• separability: is our ability to use this channel affected by another one?
• popout: can things jump out using this channel?
Accuracy: Fundamental theory

• length is accurate: linear

• others magnified or compressed
 – exponent characterizes

Steven’s Psychophysical Power Law: $S = I^N$

S = sensation

I = intensity
Accuracy: Vis experiments

Discriminability: How many usable steps?

- must be sufficient for number of attribute levels to show
 - linewidth: few bins
Separability vs. Integrality

Position
+ Hue (Color)

Size
+ Hue (Color)

Width
+ Height

Red
+ Green

Fully separable
2 groups each

Some interference
2 groups each

Some/significant interference
3 groups total: integral area

Major interference
4 groups total: integral hue
Popout

• find the red dot
 – how long does it take?
Popout

• find the red dot
 – how long does it take?
Popout

• find the red dot
 – how long does it take?
Popout

• find the red dot
 – how long does it take?
Popout

• find the red dot
 – how long does it take?
Popout

• find the red dot
 – how long does it take?
Popout

• find the red dot
 – how long does it take?
Popout

• find the red dot
 – how long does it take?
• parallel processing on many individual channels
 – speed independent of distractor count
 – speed depends on channel and amount of difference from distractors
• serial search for (almost all) combinations
 – speed depends on number of distractors
Popout

• many channels
 – tilt, size, shape, proximity, shadow direction, ...
• many channels
 – tilt, size, shape, proximity, shadow direction, ...

• but not all!
 – parallel line pairs do not pop out from tilted pairs
Factors affecting accuracy

- alignment
- distractors
- distance
- common scale
Relative vs. absolute judgements

• perceptual system mostly operates with relative judgements, not absolute
Relative vs. absolute judgements

- perceptual system mostly operates with relative judgements, not absolute
 - that's why accuracy increases with common frame/scale and alignment

Relative vs. absolute judgements

- perceptual system mostly operates with relative judgements, not absolute
 - that’s why accuracy increases with common frame/scale and alignment
 - Weber’s Law: ratio of increment to background is constant

length

position along unaligned common scale

position along aligned scale

Relative vs. absolute judgements

- perceptual system mostly operates with relative judgements, not absolute
 - that’s why accuracy increases with common frame/scale and alignment
 - Weber’s Law: ratio of increment to background is constant
 - filled rectangles differ in length by 1:9, difficult judgement
 - white rectangles differ in length by 1:2, easy judgement

A \hspace{1cm} B
\hspace{1cm} A \hspace{1cm} B
\hspace{1cm} A \hspace{1cm} B

length
position along unaligned common scale
position along aligned scale

Relative luminance judgements

- perception of luminance is contextual based on contrast with surroundings

http://persci.mit.edu/gallery/checkershadow
Relative luminance judgements

- perception of luminance is contextual based on contrast with surroundings

http://persci.mit.edu/gallery/checkershadow
Relative color judgements

• color constancy across broad range of illumination conditions

http://www.purveslab.net/seeforyourself/
Relative color judgements

- color constancy across broad range of illumination conditions

http://www.purveslab.net/seeforyourself/
Grouping

• containment
• connection

Marks as Links

Containment

Connection

• proximtity
 – same spatial region
• similarity
 – same values as other
 categorical channels

Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape
Rules of Thumb
Rules of Thumb Summary

- No unjustified 3D
- No unjustified 2D
- Eyes beat memory
- Resolution over immersion
- Overview first, zoom and filter, details on demand
- Responsiveness is required
- Function first, form next
Unjustified 3D all too common, in the news and elsewhere

Depth vs power of the plane

- high-ranked spatial position channels: **planar** spatial position
 - not depth!

Magnitude Channels: Ordered Attributes

- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)

Steven’s Psychophysical Power Law: $S = I^N$

- Electric Shock (3.5)
- Saturation (1.7)
- Length (1)
- Area (0.7)
- Depth (0.67)
- Brightness (0.5)
No unjustified 3D: Danger of depth

• we don’t really live in 3D: we see in 2.05D
 – acquire more info on image plane quickly from eye movements
 – acquire more info for depth slower, from head/body motion

We can only see the outside shell of the world
Occlusion hides information

- occlusion
- interaction can resolve, but at cost of time and cognitive load

Perspective distortion loses information

• perspective distortion
 – interferes with all size channel encodings
 – power of the plane is lost!

[Visualizing the Results of Multimedia Web Search Engines. Mukherjea, Hirata, and Hara. InfoVis 96]
3D vs 2D bar charts

- 3D bars very difficult to justify!
 - perspective distortion
 - occlusion
- faceting into 2D almost always better choice

[http://perceptualedge.com/files/GraphDesignIQ.html]
Tilted text isn’t legible

- text legibility
 - far worse when tilted from image plane

- further reading

No unjustified 3D example: Time-series data

- extruded curves: detailed comparisons impossible

[Cluster and Calendar based Visualization of Time Series Data, van Wijk and van Selow, Proc. InfoVis 99.]
No unjustified 3D example: Transform for new data abstraction

- derived data: cluster hierarchy
- juxtapose multiple views: calendar, superimposed 2D curves

[Cluster and Calendar based Visualization of Time Series Data. van Wijk and van Selow, Proc. InfoVis 99.]
Justified 3D: shape perception

- benefits outweigh costs when task is shape perception for 3D spatial data
 - interactive navigation supports synthesis across many viewpoints

Justified 3D: Economic growth curve

• constrained navigation steps through carefully designed viewpoints

No unjustified 3D

- 3D legitimate for true 3D spatial data
- 3D needs very careful justification for abstract data
 - enthusiasm in 1990s, but now skepticism
 - be especially careful with 3D for point clouds or networks

No unjustified 2D

• consider whether network data requires 2D spatial layout
 – especially if reading text is central to task!
 – arranging as network means lower information density and harder label lookup compared to text lists

• benefits outweigh costs when topological structure/context important for task
 – be especially careful for search results, document collections, ontologies
Eyes beat memory

• principle: external cognition vs. internal memory
 – easy to compare by moving eyes between side-by-side views
 – harder to compare visible item to memory of what you saw

• implications for animation
 – great for choreographed storytelling
 – great for transitions between two states
 – poor for many states with changes everywhere
 • consider small multiples instead

literal abstract
animation small multiples
show time with time show time with space
Eyes beat memory example: Cerebral

- small multiples: one graph instance per experimental condition
 - same spatial layout
 - color differently, by condition

Why not animation?

• disparate frames and regions: comparison difficult
 – vs contiguous frames
 – vs small region
 – vs coherent motion of group

• safe special case
 – animated transitions
Change blindness

- if attention is directed elsewhere, even drastic changes not noticeable
 - remember door experiment?
- change blindness demos
 - mask in between images
 - https://youtu.be/bh_9XFzbWV8
Resolution beats immersion

- immersion typically not helpful for abstract data
 - do not need sense of presence or stereoscopic 3D
 - desktop also better for workflow integration
- resolution much more important: pixels are the scarcest resource
- virtual reality for abstract data difficult to justify thus far
 - but stay tuned with second wave, AR (augmented reality) has more promise

Overview first, zoom and filter, details on demand

• influential mantra from Shneiderman

• overview = summary
 – microcosm of full vis design problem
Rule of thumb: **Responsiveness is required**

• **visual feedback: three rough categories**
 – **0.1 seconds: perceptual processing**
 • subsecond response for mouseover highlighting - ballistic motion
 – **1 second: immediate response**
 • fast response after mouseclick, button press - Fitts’ Law limits on motor control
 – **10 seconds: brief tasks**
 • bounded response after dialog box - mental model of heavyweight operation (file load)

• **scalability considerations**
 – highlight selection without complete redraw of view (graphics frontbuffer)
 – show hourglass for multi-second operations (check for cancel/undo)
 – show progress bar for long operations (process in background thread)
 – rendering speed when item count is large (guaranteed frame rate)
Function first, form next

• start with focus on functionality
 – possible to improve aesthetics later on, as refinement
 – if no expertise in-house, find good graphic designer to work with
 – aesthetics do matter: another level of function
 – visual hierarchy, alignment, flow
 – Gestalt principles in action
 – *(not covered in this class)*

• dangerous to start with aesthetics
 – usually impossible to add function retroactively
Form: Basic graphic design ideas

- **proximity**
 - do group related items together
 - avoid equal whitespace between unrelated

- **alignment**
 - do find/make strong line, stick to it
 - avoid automatic centering

- **repetition**
 - do unify by pushing existing consistencies

- **contrast**
 - if not identical, then very different
 - avoid not quite the same

- **buy now and read cover to cover - very practical, worth your time, fast read!**

Best practices: Labelling

• make visualizations as self-documenting as possible
 – meaningful & useful title, labels, legends
 • axes and panes/subwindows should have labels
 – and axes should have good mix/max boundary tick marks
 • everything that’s plotted should have a legend
 – and own header/labels if not redundant with main title
 • use reasonable numerical format
 – avoid scientific notation in most cases

[https://xkcd.com/833/]
Rules of Thumb Summary

• No unjustified 3D
 – Power of the plane
 – Disparity of depth
 – Occlusion hides information
 – Perspective distortion dangers
 – Tilted text isn’t legible

• No unjustified 2D

• Eyes beat memory

• Resolution over immersion

• Overview first, zoom and filter, details on demand

• Responsiveness is required

• Function first, form next
Design Study Methodology
Design Study Methodology

Reflections from the Trenches and from the Stacks

http://www.cs.ubc.ca/labs/imager/tr/2012/dsm/

Design Study Methodology: Reflections from the Trenches and from the Stacks.
Methodology for problem-driven work

• definitions

• 9-stage framework

• 32 pitfalls & how to avoid them

• comparison to related methodologies
Lessons learned from the trenches: 21 between us
Design study methodology: definitions

TASK CLARITY
- Crisp
- Fuzzy

INFORMATION LOCATION
- Head
- Computer

DESIGN STUDY METHODOLOGY
- Suitable
- Not enough data
- Algorithm automation possible
9 stage framework

PRECONDITION
learn → winnow → cast → discover → design → implement → deploy → reflect → write

CORE

ANALYSIS
9-stage framework

- learn
- winnow
- cast

PRECONDITION

discover > design > implement > deploy

CORE

reflect > write

ANALYSIS
9-stage framework

discover
design
implement
deploy
9-stage framework

- guidelines: confirm, refine, reject, propose
9-stage framework
Design study methodology: 32 pitfalls

• and how to avoid them

<table>
<thead>
<tr>
<th>PF-1</th>
<th>premature advance: jumping forward over stages</th>
<th>general</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF-2</td>
<td>premature start: insufficient knowledge of vis literature</td>
<td>learn</td>
</tr>
<tr>
<td>PF-3</td>
<td>premature commitment: collaboration with wrong people</td>
<td>winnow</td>
</tr>
<tr>
<td>PF-4</td>
<td>no real data available (yet)</td>
<td>winnow</td>
</tr>
<tr>
<td>PF-5</td>
<td>insufficient time available from potential collaborators</td>
<td>winnow</td>
</tr>
<tr>
<td>PF-6</td>
<td>no need for visualization: problem can be automated</td>
<td>winnow</td>
</tr>
<tr>
<td>PF-7</td>
<td>researcher expertise does not match domain problem</td>
<td>winnow</td>
</tr>
<tr>
<td>PF-8</td>
<td>no need for research: engineering vs. research project</td>
<td>winnow</td>
</tr>
<tr>
<td>PF-9</td>
<td>no need for change: existing tools are good enough</td>
<td>winnow</td>
</tr>
</tbody>
</table>
I’m a domain expert! Wanna collaborate?

Of course!!!
Have **data**?
Have **time**?
Have **need**?

Interesting **problem**?

...
Are you a user???

... or maybe a fellow tool builder?
Metaphor

Winnowing
Collaborator winnowing

initial conversation

(potential collaborators)
Collaborator winnowing

initial conversation

further meetings
Collaborator winnowing

initial conversation

further meetings

prototyping
Collaborator winnowing

- initial conversation
- further meetings
- prototyping
- full collaboration
Collaborator winnowing

Talk with many, stay with few!
EXAMPLE FROM THE TRENCHES

Premature Collaboration!

PowerSet Viewer
2 years / 4 researchers

WikeVis
0.5 years / 2 researchers
EXAMPLE FROM THE TRENCHES

Premature Collaboration!

PowerSet Viewer
2 years / 4 researchers

WikeVis
0.5 years / 2 researchers

- Fellow tool builders
- Data promised
Design study methodology: 32 pitfalls

<table>
<thead>
<tr>
<th>PF-10</th>
<th>no real/important/recurring task</th>
<th>winnow</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF-11</td>
<td>no rapport with collaborators</td>
<td>winnow</td>
</tr>
<tr>
<td>PF-12</td>
<td>not identifying front line analyst and gatekeeper before start</td>
<td>cast</td>
</tr>
<tr>
<td>PF-13</td>
<td>assuming every project will have the same role distribution</td>
<td>cast</td>
</tr>
<tr>
<td>PF-14</td>
<td>mistaking fellow tool builders for real end users</td>
<td>cast</td>
</tr>
<tr>
<td>PF-15</td>
<td>ignoring practices that currently work well</td>
<td>discover</td>
</tr>
<tr>
<td>PF-16</td>
<td>expecting just talking or fly on wall to work</td>
<td>discover</td>
</tr>
<tr>
<td>PF-17</td>
<td>experts focusing on visualization design vs. domain problem</td>
<td>discover</td>
</tr>
<tr>
<td>PF-18</td>
<td>learning their problems/language: too little / too much</td>
<td>discover</td>
</tr>
<tr>
<td>PF-19</td>
<td>abstraction: too little</td>
<td>design</td>
</tr>
<tr>
<td>PF-20</td>
<td>premature design commitment: consideration space too small</td>
<td>design</td>
</tr>
</tbody>
</table>
Of course they need the cool technique I built last year!
METAPHOR

Design Space

+ good
○ okay
- poor
METAPHOR
Design Space

your technique...

+ good
○ okay
- poor
METAPHOR
Design Space

know
Metaphor

Design Space

know

consider
Metaphor
Design Space

know
consider
propose
M**ETAPHOR**

Design Space

- know
- consider
- propose
- select
Think broad!
<table>
<thead>
<tr>
<th>PF-21</th>
<th>mistaking technique-driven for problem-driven work</th>
<th>design</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF-22</td>
<td>nonrapid prototyping</td>
<td>implement</td>
</tr>
<tr>
<td>PF-23</td>
<td>usability: too little / too much</td>
<td>implement</td>
</tr>
<tr>
<td>PF-24</td>
<td>premature end: insufficient deploy time built into schedule</td>
<td>deploy</td>
</tr>
<tr>
<td>PF-25</td>
<td>usage study not case study: non-real task/data/user</td>
<td>deploy</td>
</tr>
<tr>
<td>PF-26</td>
<td>liking necessary but not sufficient for validation</td>
<td>deploy</td>
</tr>
<tr>
<td>PF-27</td>
<td>failing to improve guidelines: confirm, refine, reject, propose</td>
<td>reflect</td>
</tr>
<tr>
<td>PF-28</td>
<td>insufficient writing time built into schedule</td>
<td>write</td>
</tr>
<tr>
<td>PF-29</td>
<td>no technique contribution \neq good design study</td>
<td>write</td>
</tr>
<tr>
<td>PF-30</td>
<td>too much domain background in paper</td>
<td>write</td>
</tr>
<tr>
<td>PF-31</td>
<td>story told chronologically vs. focus on final results</td>
<td>write</td>
</tr>
<tr>
<td>PF-32</td>
<td>premature end: win race vs. practice music for debut</td>
<td>write</td>
</tr>
</tbody>
</table>
I can write a design study paper in a week!

“writing is research”

[Wolcott: Writing up qualitative research, 2009]
Metaphor

Horse Race vs. Music Debut

Must be first!

Am I ready?

technique-driven

problem-driven

http://www.alaineknipes.com/interests/violin_concert.jpg

EXAMPLE FROM THE TRENCHES
Don’t step on your own toes!

First design round published

Subsequent work not stand-alone paper

AutobahnVis 1.0
[Sedlmair et al., Smart Graphics, 2009]

AutobahnVis 2.0
[Sedlmair et al., Information Visualization 10(3), 2011]
Reflections from the stacks: Wholesale adoption inappropriate

• ethnography
 – rapid, goal-directed fieldwork

• grounded theory
 – not empty slate: vis background is key

• action research
 – aligned
 • intervention as goal
 • transferability not reproducibility
 • personal involvement is key

 – opposition
 • translation of participant concepts into visualization language
 • researcher lead not facilitate design
 • orthogonal to vis concerns: participants as writers, adversarial to status quo, postmodernity
Next week

• to read & discuss (async, before next class)
 – VAD book, Ch 7: Arrange Tables
 – paper: LineUp [technique]
 – paper: Revisiting Bertin Matrices [technique]

• sync class: project pitches!
 – 2 min each
 – if already have full or partial team, can combine your times together
 – up to you: prerecord video OR present live, need slides either way
 • due by 1pm (Wed Sep 29)
 – if prerecorded, videos and slides. if live: slides
 • video creation tips/resources https://www.cs.ubc.ca/~tmm/courses/547-21/video.html
 – near-realtime Q&A / discussion through dedicated Piazza thread
Plan for today

• 45 min: Marks & Channels
 – mini-lecture
 – examples & discussion
 – further Q&A

• 30 min: Rules of Thumb, Design Study Methodology
 – further Q&A

• 5 min: upcoming
 – next week: async reading, sync project pitches

• (break)

• 75 min small groups exercise: Decoding
 – 45 min: breakout groups
 – 30 min: reportbacks