Course Logistics
Async so far

• last week
 – async read only
 • Course Logistics (no comments, no responses)
 – async read & comment
 • VAD Ch 1: Why Visualization? (comments only, no responses)
 – async discuss
 • self-intros

• this week
 – async read & comment & respond
 • VAD Ch 2: Data Abstraction
 • VAD Ch 3: Task Abstraction
 • paper: Nested Model [basis for VAD Ch 4]
Updates

• All students moved from waitlist to registered
• Official enrolment now 38
• Very likely to move to Forestry (FSC) 2330 starting next week
 – especially if ventilation here in SWNG 207 remains terrible!
• Stay tuned for Canvas marks updates
Discussion: Round 1
Exercise: Abstractions
Now: In-class design exercise, in small groups

• Abstractions
 – practice with data & task abstractions, on concrete example: Aid to Countries
 – crucial ideas: determine cardinalities/ranges
 – precondition for all decisions about visual encoding

• Small-group exercise: 60-ish min
 – breakout groups (4 people/group)
 – googledoc worksheets, as before
 – document in your group's googledoc w/ text as you go!
 – reportbacks, as before (intermediate and final)
 – I'll flip through googledocs, some questions for group spokesperson
Discussion: Round 2
Next week

• to read & discuss (async, before next class)
 – VAD book, Ch 5: Marks & Channels
 – VAD book, Ch 6: Rules of Thumb
 – paper: Design Study Methodology
Backup/Reference Slides
Ch 1. What's Vis, and Why Do It?
Visualization defined & motivated

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

• human in the loop needs the details
 – doesn't know exactly what questions to ask in advance
 – longterm exploratory analysis
 • speed up through human-in-the-loop visual data analysis
 – presentation of known results
 – stepping stone towards automation: refining, trustbuilding
 – interplay between human judgement and automatic computation

• intended task, measurable definitions of effectiveness

short version: alternate to next 3 slides
Defining visualization (vis)

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Why?...
Visualization (vis) defined & motivated

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

• human in the loop needs the details & no trusted automatic solution exists
 – doesn't know exactly what questions to ask in advance
 – exploratory data analysis
 • **speed up** through human-in-the-loop visual data analysis
 – present known results to others
 – stepping stone towards automation
 – before model creation to provide understanding
 – during algorithm creation to refine, debug, set parameters
 – before or during deployment to build trust and monitor
Why use an external representation?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- external representation: replace cognition with perception

Why depend on vision?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

• human visual system is high-bandwidth channel to brain
 – overview possible due to background processing
 • subjective experience of seeing everything simultaneously
 • significant processing occurs in parallel and pre-attentively

• sound: lower bandwidth and different semantics
 – overview not supported
 • subjective experience of sequential stream

• touch/haptics: impoverished record/replay capacity
 – only very low-bandwidth communication thus far

• taste, smell: no viable record/replay devices
Why represent all the data?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- summaries lose information, details matter
 - confirm expected and find unexpected patterns
 - assess validity of statistical model

Anscombe’s Quartet

<table>
<thead>
<tr>
<th>Identical statistics</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>x mean</td>
<td>9</td>
<td>9.5</td>
</tr>
<tr>
<td>x variance</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>y mean</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>y variance</td>
<td>3.75</td>
<td>3.75</td>
</tr>
<tr>
<td>x/y correlation</td>
<td>0.816</td>
<td>0.816</td>
</tr>
</tbody>
</table>

https://www.youtube.com/watch?v=DbJyPELmhJc

Same Stats, Different Graphs
Visualization defined & motivated

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- suitable when human in the loop needs details
- interplay between human judgement and automatic computation

Anscombe’s Quartet

<table>
<thead>
<tr>
<th></th>
<th>x mean</th>
<th>y mean</th>
<th>x variance</th>
<th>y variance</th>
<th>x/y correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>9</td>
<td>7.5</td>
<td>10</td>
<td>3.75</td>
<td>0.816</td>
</tr>
</tbody>
</table>

Datasaurus Dozen

Matejka & Fitzmaurice
Why focus on tasks and effectiveness?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

• effectiveness requires match between data/task and representation
 – set of representations is huge
 – many are ineffective mismatch for specific data/task combo
 – increases chance of finding good solutions if you understand full space of possibilities

• what counts as effective?
 – novel: enable entirely new kinds of analysis
 – faster: speed up existing workflows

• how to validate effectiveness
 – many methods, must pick appropriate one for your context
What resource limitations are we faced with?

Vis designers must take into account three very different kinds of resource limitations: those of computers, of humans, and of displays.

- **computational limits**
 - processing time
 - system memory

- **human limits**
 - human attention and memory

- **display limits**
 - pixels are precious resource, the most constrained resource
 - **information density**: ratio of space used to encode info vs unused whitespace
 - tradeoff between clutter and wasting space, find sweet spot between dense and sparse
Why analyze?

- imposes structure on huge design space
- scaffold to help you think systematically about choices
- analyzing existing as stepping stone to designing new
- most possibilities ineffective for particular task/data combination
How?

Encode

<table>
<thead>
<tr>
<th>Arrange</th>
<th>Map</th>
<th>Manipulate</th>
<th>Facet</th>
<th>Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Express</td>
<td>Color</td>
<td>Change</td>
<td>Juxtapose</td>
<td>Filter</td>
</tr>
<tr>
<td>Separate</td>
<td>Hue</td>
<td>Select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Align</td>
<td>Saturation</td>
<td>Partition</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Luminance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Size, Angle, Curvature, ...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shape</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ ● ■ △</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Motion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Direction, Rate, Frequency, ...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Use</th>
<th>Navigate</th>
<th>Superimpose</th>
<th>Embed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< ⬇️ ⬆️</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Further reading

 – Chap 1: What’s Vis, and Why Do It?

Ch 2. What: Data Abstraction
Datasets

- **Data Types**
 - Items
 - Attributes
 - Links
 - Positions
 - Grids

- **Data and Dataset Types**
 - Tables
 - Networks & Trees
 - Fields
 - Geometry
 - Clusters, Sets, Lists

Attributes

- **Attribute Types**
 - Categorical
 - Ordered
 - Quantitative

- **Dataset Availability**
 - Static
 - Dynamic

Dataset Types

- **Tables**
 - Items
 - Attributes
 - Cell containing value

- **Networks**
 - Nodes
 - Links
 - Grids

- **Fields (Continuous)**
 - Attributes (columns)
 - Value in cell

- **Geometry (Spatial)**
 - Clusters, Sets, Lists

- **Dataset Availability**
 - Static
 - Dynamic
Types: Datasets and data

Dataset Types
- Tables
- Networks

Attribute Types
- Categorical
- Ordered
 - Ordinal
 - Quantitative

Ordering Direction
- Sequential
- Diverging
- Cyclic

Spatial
- Fields (Continuous)
- Geometry (Spatial)
Three major datatypes

Dataset Types

- **Tables**
 - Attributes (columns)
 - Items (rows)
 - Cell containing value
 - Multidimensional Table

- **Networks**
 - Link
 - Node (item)
 - Trees

- **Spatial**
 - Fields (Continuous)
 - Geometry (Spatial)
 - Grid of positions
 - Cell
 - Attributes (columns)
 - Value in cell

- **Visualization vs Computer Graphics**
 - Geometry is design decision
Dataset and data types

Data and Dataset Types

<table>
<thead>
<tr>
<th>Tables</th>
<th>Networks & Trees</th>
<th>Fields</th>
<th>Geometry</th>
<th>Clusters, Sets, Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items</td>
<td>Items (nodes)</td>
<td>Grids</td>
<td>Items</td>
<td>Items</td>
</tr>
<tr>
<td>Attributes</td>
<td>Links</td>
<td>Positions</td>
<td>Positions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attributes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Types

- Items
- Attributes
- Links
- Positions
- Grids

Dataset Availability

- Static
- Dynamic
Attribute types

- **Attribute Types**
 - Categorical
 - Ordered
 - Ordinal
 - Quantitative

- **Ordering Direction**
 - Sequential
 - Diverging
 - Cyclic
Further reading, full Ch 2

• The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations Ben Shneiderman, Proc. 1996 IEEE Visual Languages

• Visualization of Time-Oriented Data. Wolfgang Aigner, Silvia Miksch, Heidrun Schumann, Chris Tominski. Springer 2011.
Ch 3. Why: Task Abstraction
• \{action, target\} pairs
 – discover distribution
 – compare trends
 – locate outliers
 – browse topology

Actions
- **Analyze**
 - Consume
 - Discover
 - Produce
 - Annotate
 - Record
 - Derive

- **Search**
 - Target known
 - Location known
 - Lookup
 - Location unknown
 - Locate
 - Explore
 - Target unknown
 - Enjoy

- **Query**
 - Identify
 - Compare
 - Summarize

Targets
- **All Data**
 - Trends
 - Outliers
 - Features

- **Attributes**
 - One
 - Distribution
 - Many
 - Dependency
 - Correlation
 - Similarity

- **Network Data**
 - Topology
 - Paths

- **Spatial Data**
 - Shape
Actions: Analyze, Query

- analyze
 - consume
 • discover vs present
 - aka explore vs explain
 • enjoy
 - aka casual, social
 - produce
 • annotate, record, derive

- query
 - how much data matters?
 • one, some, all

- independent choices
 - analyze, query, (search)
Actions: Analyze

• consume
 – discover vs present
 • classic split
 • aka explore vs explain
 – enjoy
 • newcomer
 • aka casual, social

• produce
 – annotate, record
 – derive
 • crucial design choice
Derive

• don’t just draw what you’re given!
 – decide what the right thing to show is
 – create it with a series of transformations from the original dataset
 – draw that

• one of the four major strategies for handling complexity

Original Data

Derived Data
Analysis example: Derive one attribute

- Strahler number
 - centrality metric for trees/networks
 - derived quantitative attribute
 - draw top 5K of 500K for good skeleton

Task 1

- **What?**
 - In Tree
 - Out Quantitative attribute on nodes

- **Why?**
 - Derive

Task 2

- **What?**
 - In Tree
 - In Quantitative attribute on nodes
 - Out Filtered Tree

- **Why?**
 - Summarize
 - Reduce
 - Filter

- **How?**
 - Topology
Actions: Search, query

• what does user know? ➔ Search
 – target, location

• how much of the data matters?
 – one, some, all

• independent choices for each of these three levels
 – analyze, search, query
 – mix and match

<table>
<thead>
<tr>
<th></th>
<th>Target known</th>
<th>Target unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location known</td>
<td>Lookup</td>
<td>Browse</td>
</tr>
<tr>
<td>Location unknown</td>
<td>Locate</td>
<td>Explore</td>
</tr>
</tbody>
</table>
Why: Targets

🔄 All Data

➡️ Trends

➡️ Outliers

➡️ Features

🔄 Attributes

➡️ One

➡️ Distribution

➡️ Extremes

➡️ Many

➡️ Dependency

➡️ Correlation

➡️ Similarity

🔄 Network Data

➡️ Topology

➡️ Paths

🔄 Spatial Data

➡️ Shape
Further reading

 – Chap 2: What: Data Abstraction
 – Chap 3: Why: Task Abstraction

Further reading, full Ch 3

- What does the user want to see?: what do the data want to be? A. Johannes Pretorius and Jarke J. van Wijk. Information Visualization 8(3):153-166, 2009.

- Chapter 1, Readings in Information Visualization: Using Vision to Think. Stuart Card, Jock Mackinlay, and Ben Shneiderman, Morgan Kaufmann 1999.

Ch 4. Analysis: Four Levels for Validation
How to evaluate a visualization: So many methods, how to pick?

• Computational benchmarks?
 – quant: system performance, memory

• User study in lab setting?
 – quant: (human) time and error rates, preferences
 – qual: behavior/strategy observations

• Field study of deployed system?
 – quant: usage logs
 – qual: interviews with users, case studies, observations

• Analysis of results?
 – quant: metrics computed on result images
 – qual: consider what structure is visible in result images

• Justification of choices?
 – qual: perceptual principles, best practices
Nested model: Four levels of visualization design

- **domain situation**
 - who are the target users?

- **abstraction**
 - translate from specifics of domain to vocabulary of visualization
 - **what** is shown? data abstraction
 - **why** is the user looking at it? task abstraction

- **idiom**
 - **how** is it shown?
 - **visual encoding** idiom: how to draw
 - **interaction** idiom: how to manipulate

- **algorithm**
 - efficient computation
Nested model: Four levels of visualization design

- **domain situation**
 - who are the target users?

- **abstraction**
 - translate from specifics of domain to vocabulary of visualization
 - **what** is shown? **data** abstraction
 - **why** is the user looking at it? **task** abstraction
 - often must transform data, guided by task

- **idiom**
 - **how** is it shown?
 - **visual encoding** idiom: how to draw
 - **interaction** idiom: how to manipulate

- **algorithm**
 - efficient computation
Different threats to validity at each level

- cascading effects downstream

- **Domain situation**
 - You misunderstood their needs

- **Data/task abstraction**
 - You're showing them the wrong thing

- **Visual encoding/interaction idiom**
 - The way you show it doesn't work

- **Algorithm**
 - Your code is too slow
Interdisciplinary: need methods from different fields at each level

• mix of qual and quant approaches (typically)

Mismatches: Common problem

- **Domain situation**
 - Observe target users using existing tools

- **Data/task abstraction**
 - **Visual encoding/interaction idiom**
 - Justify design with respect to alternatives
 - **Algorithm**
 - Measure system time/memory
 - Analyze computational complexity
 - Analyze results qualitatively
 - Measure human time with lab experiment (*lab study*)
 - Observe target users after deployment (*field study*)
 - Measure adoption

benchmarks can't confirm design

lab studies can't confirm task abstraction

Analysis examples: Single paper includes only subset of methods

- observe and interview target users
- justify encoding/interaction design
- measure system time/memory
- qualitative result image analysis

- observe and interview target users
- justify encoding/interaction design
- qualitative result image analysis
- field study, document deployed usage

An energy model for visual graph clustering. (LinLog)
Noack. Graph Drawing 2003
- qualitative/quantitative image analysis

Effectiveness of animation in trend visualization.
- lab study, measure time/errors for operation

Interactive visualization of genealogical graphs.
McGuffin and Balakrishnan. InfoVis 2005.
- justify encoding/interaction design
- qualitative result image analysis
- test on target users, get utility anecdotes

- justify encoding/interaction design
- computational complexity analysis
- measure system time/memory
- qualitative result image analysis
Further reading

 – Chap 4: Analysis: Four Levels for Validation

• How to do good research, get it published in SIGKDD and get it cited!, Eamonn Keogh, SIGKDD Tutorial 2009.

• Externalisation - how writing changes thinking. Alan Dix. Interfaces, Autumn 2008.
Guerilla/Discount Usability

• grab a few people and watch them use your interface
 – even 3-5 gives substantial coverage of major usability problems
 – agile/lean qualitative, vs formal quantitative user studies
 • goal is not statistical significance!

• think-aloud protocol
 – contextual inquiry (conversations back and forth) vs fly on the wall (you’re silent)
Further reading, usability

• 7 Step Guide to Guerrilla Usability Testing, Markus Piper
 – https://userbrain.net/blog/7-step-guide-guerrilla-usability-testing-diy-usability-testing-method

• The Art of Guerrilla Usability Testing, David Peter Simon
 – http://www.uxbooth.com/articles/the-art-of-guerrilla-usability-testing/

• Discount Usability: 20 Years, Jakob Nielsen
 – https://www.nngroup.com/articles/discount-usability-20-years/

• Interaction Design: Beyond Human-Computer Interaction

• About Face: The Essentials of Interaction Design

• Task-Centered User Interface Design. Lewis & Rieman, 1994
 – http://hcibib.org/tcuid/