Information Visualization

Reduce: Aggregation & Filtering

Project Peer Reviews

Tamara Munzner
Department of Computer Science
University of British Columbia

Week 11, 17 Nov 2021

https://www.cs.ucl.ac.uk/~tamaras/347-31

Q&A / Backup Slides

Visualization Analysis & Design

Reduce: Aggregation & Filtering (Ch 13)

Tamara Munzner
Department of Computer Science
University of British Columbia
@tamaras

How to handle complexity: 3 previous strategies + 1 more

Reduce: Aggregation & Filtering

<table>
<thead>
<tr>
<th>Device</th>
<th>Manipulate</th>
<th>Face</th>
<th>Justuxtapose</th>
<th>Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Device Icon]</td>
<td>![Manipulate Icon]</td>
<td>![Face Icon]</td>
<td>![Justuxtapose Icon]</td>
<td>![Reduce Icon]</td>
</tr>
</tbody>
</table>

- **Derive new data to show within view**
- **Change view over time**
- **Facet across multiple views**
- **Reduce items/attributes within single view**

Filter

- **Eliminate some elements**
 - either items or attributes
 - according to what?
 - any possible function that partitions dataset into two sets
 - attribute values (larger/smaller than x)
 - menu/scroll

- **Filters vs queries**
 - query start with nothing, add in elements
 - filters: start with everything, remove elements
 - best approach depends on dataset size

Aggregate

- a group of elements is represented by a smaller number of derived elements

- **new table**: keys are bins, values are counts
- **opportunity for interaction**: control bin size on the fly

How to handle complexity: 3 previous strategies

Reduce: Aggregation & Filtering

<table>
<thead>
<tr>
<th>Device</th>
<th>Manipulate</th>
<th>Face</th>
<th>Justuxtapose</th>
<th>Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Device Icon]</td>
<td>![Manipulate Icon]</td>
<td>![Face Icon]</td>
<td>![Justuxtapose Icon]</td>
<td>![Reduce Icon]</td>
</tr>
</tbody>
</table>

- **Derive new data to show within view**
- **Change view over time**
- **Facet across multiple views**

Idiom: FilmFinder

- **dynamic queries/filters for items**
 - tightly coupled interaction and visual encoding idioms, so user can immediately see results of action

Idiom: cross filtering

- **team filtering**
- **coordinated views/controls combined**
 - all scented histogram/indicator updates when any ranges change

Idiom: histogram

- **static item aggregation**
- **task/find distribution**
- **data table**
- **derived data**
 - new table lists are bins, values are counts
 - bin size
 - pattern can change dramatically depending on discretization
 - opportunity for interaction: control bin size on the fly

Idiom: scented widgets

- **augmented widgets show information scent**
 - better cues for information foraging whether value in drilling down further vs looking elsewhere
 - concise use of space: histogram on slider

Upcoming

- **next week (W12)**
 - async last week of readings/discussion (light, 2 readings)
 - Ch 14: Embed - Focus+Context
 - paper: Visualizing Deep Learning Models in TensorFlow
 - (type: design study)
 - in class post-update meetings with Tamara
 - oral feedback on project progress, after I've read them
 - last week of classes (W13)
 - async: last readings/discussion
 - in class: evals
 - in class: Q&A wrapup (W12)
 - in class: lecture on research process and final writeup expectations
Idiom: scented widgets
• augmented widgets show information scent
 – better cues for information foraging
 – show whether value in drilling down further vs. looking elsewhere
 – concise use of space: histogram on slider

Idiom: scented widgets
• augmented widgets show information scent
 – better cues for information foraging
 – show whether value in drilling down further vs. looking elsewhere
 – concise use of space: histogram on slider

Scented histogram bisliders: detailed

Idiom: boxplot
• static item aggregation
• task: find distribution
• data table
• derived data
 – 5 quant attributes
 • median: central line
 • lower and upper quartile boxes
 • lower and upper fences, whiskers
 • outliers beyond fence cutoffs explicitly shown
 – scalability: unlimited number of items

Figure 4: From left to right: box plot, vase plot, violin plot and bean plot. Within each plot, the distributions from left to right.

Dynamic aggregation: Clustering
• clustering: classification of items into similar bins
 – based on similarity measure
 – hierarchical algorithms produce "similarity trees": cluster hierarchy
 – aggregative clustering starts with each node as own cluster; then iteratively merge
 – cluster hierarchy: derived data used w/ many dynamic aggregation idioms
 – cluster more homogeneous than whole dataset
 – statistical measures & distribution more meaningful

Gerrymandering: MAUP for political gain
A real district in Pennsylvania: Democrats won 51% of the vote but only 5 out of 18 house seats

Dynamic aggregation: Spatial aggregation
• MAUP: Modifiable Areal Unit Problem
 – boundaries of cartographic regions can yield dramatically different results
 – zone effects
 – scale effects

Attribute aggregation: Dimensionality reduction
• attribute aggregation
 – derive low-dimensional target space from high-dimensional space
 – use when you can’t directly measure what you care about
 – true dimensionality of dataset conjectured to be smaller than dimensionality of measurements
 – based on similarity measures, more meaningful

Gerrymandering: MAUP for political gain

Scented Widgets: Improving Navigation Cues with Information Scent

Idiom: Dimensionality reduction & visualization
• why do people do DR?
 – improve performance of downstream algorithm
 – avoid curse of dimensionality
 – data analysis
 – look in the output: visual data stream

Abstract tasks when visualizing DR data
• dimension-oriented tasks
 – naming synthesized dims, inspect data represented by loD points
• cluster-oriented tasks
 – verifying, naming, matching to classes
 – dynamic item aggregation
 – static item aggregation
 – cluster hierarchy

Dimension-oriented tasks
• naming synthesized dims: inspect data represented by lowD points
 – 5 quant attribs
 – median: central line
 – lower and upper quartile boxes
 – lower and upper fences, whiskers
 – outliers beyond fence cutoffs explicitly shown
 – scalability: unlimited number of items

Cluster-oriented tasks
• verifying, naming, matching to classes
 – dynamic item aggregation
 – static item aggregation
 – cluster hierarchy

Dynamic aggregation: Dimensioning
• vocab use in field not consistent
– dimension/attribute
• attribute...
VDA with DR example: nonlinear vs linear

- **DR for computer graphics reflectance model**
 - goal: simulate how light bounces off materials to make realistic pictures
 - ideas: measure what light does with real materials
 - many techniques proposed
 - note: dim estimate depends on technique used!
 - second try: charting (nonlinear DR technique)
 - scree plot suggests 10-15 dims
 - note: dim estimate depends on technique used!

Capturing & using material reflectance

- reflectance measurement: interaction of light with real materials (spheres)
- results: 104 high-res images of material
- each image 4M pixels
- goal: image synthesis
 - simple: create new materials
 - need for more concise model
 - 104 materials * 4M pixels = 400M dims
 - want concise model with meaningful knobs
 - how dirty/greasy/metallic?
 - DR to the rescue!

Linear DR

- first try: PCA (linear)
 - result: error falls off sharply after ~45 dimensions
 - problem: physically impossible intermediate points when simulating new materials
 - specular highlights cannot have holes!

Nonlinear DR

- second try: charting (nonlinear DR technique)
 - scree plot suggests 10-15 dims
 - note: dim estimate depends on technique used!