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Android

e Most widely used Mobile OS
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e 12,000 new Android malware instances every day. unb


https://www.unb.ca/cic/datasets/andmal2020.html

Android Malware Detection

e Machine Learning Based Techjg e form well
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Why visualize android features? T
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e Aid in Feature Selection
o Eg. Selecting features more common in malware applications can help boost robustness [1]

[1] “On Benign Features in Malware Detection” by Michael Cao et al, ASE, 2020



Sample Selection: Which samples to train on?

e We want to identify future malware
Seen Samples Future Samples
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e We can just train on all existing benign and malware samples
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D Why visualize android features through time?
®

e |dentify features that can help detect future malware [2]

[2] “TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time. by Pendlebury et al, USENIX, 2019



Related Work: Visualizations

1. Correlation Between Features 2. Model Performance through time

wcanen [ 10

smoathness_mean

10- Arcl

0.9 -3 S S S AR S A :
0.71
0.6 1

0.5
oas 0.4 1= Recall (gVE) )
Precision (gw
0.31 F1 (gw)
- Recall (mw)
0.2 4 = Precision (mw)
o - F1 (mw)
0.1 4 =-F1 (10-fold, our dataset)
— F1 (original paper)

0.0 T T T T T T T T T T T T T T T T T T T T T T T
1 4 7 10 13 16 19 22
Testing period (month)

concavity_mean

symmetry_mean

fractal_dimension_mean

050

texture se

area se

concavity_se

symmetry_se

— os

symmetry_worst Jd

o

= 5
e - | ¢ JE

texture_mean
area_mean
smoathness_mean
concavity_mean
symmetry_mean
texture_se
smoothness_se
concavity_se
symmetry_se
fractal_dimension_se

fractal_dimension_mean



e Android Applications represented as a set of (DREBIN) features
o Benign and Malware Android applications
m Eg. appl: { featurel, feature3, featureb} label: benign
e F[eature selection metrics and their results

o Features ranked according the feature selection metrics
m Eg. Mutual info metric: {feature3, featurel, feature2}

Derived Attributes:

Malici f Feat Malicious Apps with x — Benign Apps with x e -1=> xonlyin malware apps
aliciousness of Feature x= . , .
Total Number of Apps with x e 1=> xonlyin benign apps

Apps with Feature x e 1=> All apps contain x

Total Number of Apps e 0O => No apps contain x 7

Normalized f req of Feature x =



Data Abstraction Summary

Attribute Kind
Feature Categorical
Feature Set / Feature Family Categorical
App Development Year Ordinal
Feature Maliciousness Quantitative
Feature Normalized Frequency Quantitative

Goal: Identify feature trends in android applications
Target Group: Malware detection tool developers



Visualization Design: Encodings

e Feature Maliciousness over time using heatmap

o y-axis: Feature x-axis: Development year
o Maliciousness encoded by Blue-Red Diverging Scale
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e Normalized frequency over time using bar charts

o y-axis: Feature x-axis: Development year
o Bar height: Normalized frequency of a feature
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Normalized Frequency per year of selected feature

ist_android.per



Visualization Design: View Manipulation

e Requirement 1. Accommodate for large number of features

o Design Solution
m Filter features based on feature set
m Order features based on popularity, maliciousness, ...
m Alter view using scrolling

e Requirement 2: Show selected features
o  Design solution
m  Show selection using dashed border lines

e Requirement 3: Display normalized frequency of a feature on demand
o  Design solution
m Add side view bar chart upon selection
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http://127.0.0.1:5500/index.html
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http://127.0.0.1:5500/index.html

Limitations and Future Work

Number of samples per year: Drebin Dataset

Limitations: - Saries

4,000

e Sampling bias in dataset
o Eg. Drebin Dataset:

Number of Samples

2,000

2008 2009 2010 201 2012

Year

e Short time duration for the two datasets (VT: 4 years, DREBIN: 5 years)
e Still a large number of features (Scrolling required)

Future work:

e Hand select features and train models directly on the vis interface
e Extend for any domain that requires analysis of features for feature selection
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Thank you!

Questions?



