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1. Introduction
CPSC 310 is an undergraduate software engineering course offered
at UBC Vancouver. The course involves a term-long project con-
sisting of four checkpoints each spanning a period of 2-3 weeks.
The project involves teamwork in which the student collaborates
with one other (occasionally two) student(s) through GitHub us-
ing git version control. AutoTest is an evaluation tool used in this
course, in which a suite of private tests are invoked against the
team’s solution, and feedback in the form of test failure overviews
are reported back. Throughout the course of the project, students
access resources including labs, office hours, and Piazza, where
they seek help from the course staff. CPSC 310 is a large course,
with typically more than 300 registered students, and this makes it
extremely difficult for the course staff to determine when and why
a student is struggling in the course. We define course “friction”
loosely as any identifier of student struggles: some examples being
ineffective resource allocation, non-standard use of version con-
trol, and prolonged period of inactivity. Recognizing these friction
is crucial for the course staff as it makes possible early interven-
tion. Course friction arise from many causes, and previous works
have extracted and joined data from the various tools the course
employs. For example, data set taken from 2020 Winter Term 2
offering contains 25,488 AutoTest results, 5,801 Piazza contribu-
tions, and 2,366 office hour visits, joined with each student. With
existing data, one way to solve this problem would be to manually
inspect each table row and try to identify suspicious patterns. But
tabular representations are oftentimes inefficient for searching pat-
terns over large data sets, and thus, CPSC 310 will benefit from a
more effective visualization of their course data.

1.1 Personal Expertise
We chose the domain of course friction in part because all of us
are currently TAs for some undergraduate software engineering
courses at UBC (CPSC 310, 319, 410). We are often faced with the
difficulty of identifying when a student is struggling, which delays
timely intervention and has repercussions to overall effectiveness
of learning. Most undergraduate level software engineering courses
employ some sort of source code management, autograding, Q&A
platform, from which we can derive identifiers of friction. In partic-
ular, CPSC 310’s existing datasets are especially familiar to some
of us as we have been working with them previously. This makes
it an ideal starting point for a more generalized visualization tool
on course friction. Finally, from a software engineering perspec-

tive, understanding the pitfalls in collaborative software engineer-
ing tasks aligns with our interest as well.

2. Related Work
There is a prevalent belief in CS education research that grades
in our courses are bimodal, with some population of “strugglers”
and others who do well. In past work this has been explained as
a “geek gene”, causing some students to be predisposed to better
outcomes in Computer Science courses [1]. Robins introduced the
concept of “learning edge momentum” which posits that the reason
CS1 grades appear the way they do is due to the tight linking of
knowledge and how it builds on itself [11]. If a student falls behind
the impact will compound itself quickly, which they suggest is
unique among fields of study. Patitsas et al find the problem space
is more complex [10]. They evaluated many course distributions
at UBC CPSC and found that very few are actually bimodal. This
indicates that there are not necessarily two separable populations
of students but instead a single population that undergo struggles in
diverse ways.

Even if we can not split students into two populations based
on outcomes, there is value in understanding how and why stu-
dents struggle. Various authors have used different features to cre-
ate models for identifying these students. In this paper we call
these models “red flags”. In “Exploring the Value of Different
Data Sources for Predicting Student Performance in Multiple CS
Courses” the authors use grade information to predict a final course
outcome [9]. They find that prerequisite grade or clicker grade
strongly predicts final grade. And in “In Situ Identification of Stu-
dent Self-Regulated Learning Struggles in Programming Assign-
ments” they use measures of stagnation in grade to indicate strug-
gle on an assignment [2]. Furthermore, Estey et al develop a model
using changes in programming behaviour to identify students in
need of support [4]. They find that they can identify students who
require support in the first few weeks or term and target outreach to
them. Neural networks have also been explored in finding students
in need of assistance. One paper uses student grades and the num-
ber of submissions as features in their model [3]. Together these au-
thors have conceptualized some feature (or “red flag”) and demon-
strated its relationship to student outcomes. In this paper we con-
tribute a tool that allows quick discovery and validation of features
like these in a general purpose way.

We build a dashboard style visualisation for representing stu-
dent ”red flags” and understanding their relationship to outcomes.
Dashboards are a common tool for understanding learner be-
haviour. For example, Kia and their collaborators created a dash-
board for visualising learner attributes in a MOOC class on edX



[8]. This dashboard displays attributes such as attendance, gender,
and age as bar charts. Ginda and their collaborators also investi-
gate MOOCs, creating conceptual content hierarchies and “learner
path” visualisations that show the steps a learner takes through a
class [6]. These tools demonstrate the utility of visualisations for
educators to understand the experience of their students through-
out a course. In this paper, instead of visualising learner attributes
directly we visualise learners in terms of cohorts which are defined
by models created by the visualisation user.

In “Quality based guidance for exploratory dimensionality re-
duction” the authors create a general tool and process for reducing
a high dimensionality dataset into a single attribute one, allowing
a user to pull out interesting elements for further inspection [5]. A
user does this by selecting interesting variables and then inspecting
their correlations. The problem of identifying struggling students
also maps onto dimensionality reduction. However, in our work we
are concerned about the correlation between each potential red flag
and the true struggling students. This simplifies the problem con-
siderably because we don’t care about correlation between every
pair of attributes. We also distinguish our work in that we identify
correlations between membership in the set of struggling students
instead of between quantitative attributes themselves. LineUp in-
troduces a method for visualising multidimensional data in a tab-
ular format. They facilitate the task of ranking based on a user-
specified model [7]. LineUp also allows for the comparison of mul-
tiple models by displaying them side by side. This idiom is essen-
tial to identifying struggling students because users of our tool need
to compare their candidate models to decide which is most useful.
However, LineUp stops somewhat short of the idiom we need as
they don’t incorporate temporal data. We need a user to be able
to understand how their model for identifying struggling students
varies in accuracy and sensitivity over time. LineUp does not treat
attributes as time-varying.

3. Data Abstraction
Our data abstraction consists of a series of tables representing
various aspects of our dataset. We also expect to produce more
derived attributes from these base tables.

3.1 Table autotest results
Throughout the project, students make incremental submissions
of their code by committing and pushing to branches on their git
repositories. Each team’s repository consists of a single master
branch and a number of development branches which are often-
times per member or per feature. Each project checkpoint has a
suite of associated tests that AutoTest runs on each push to these
git branches. Students can see the result of the AutoTest run on a
specific commit by explicitly requesting AutoBot 1. AutoTest result
requests are rate-limited across branches, for example, one request
on any branch per six hours per student.

Autotest results are identified by their feedback id which is
a unique identifier for each result entry. They also have several
attributes.

3.1.1 Categorical attributes
• deliv - Checkpoint number

4 categories (example: "c0")
• ref - Git branch AutoTest was called on

1665 categories (example: "ref/tags/c2-rc5")

1 Autobot is an autograding system built at UBC, students request Autobot
by commenting on a Github commit, but we run tests regardless of whether
they request it.

• is master - True if ref is the master branch

2 categories (example: 1)
• feedback requester - Deidentified user hash of the requester

409 categories
(example: "j+TyZUe34/c1mZOH9tppky9C..."2)

• committer - Deidentified user hash of the committer

409 categories
(example: "F+CFt8v9oVAaHZppCNKYTSN...")

3.1.2 Ordered attributes
• score - Test score of this AutoTest run

Ranges from 0.00 to 100.00 (example: 100.00)
• visible score - Test score currently available to the student

Ranges from 0.00 to 100.00 (example: 90.00)
• request time - Timestamp of when a student requests the result

Ranges from 1610400675825 to 1622674908773 (example:
1610401163054)

• feedback time - Timestamp of when result is returned

Ranges from 1610400675825 to 1619628202579 (example:
1610521081669)

3.2 Table contributions
Piazza is the most active resource where students seek and receive
assistance from not only the course staff, but also other fellow
CPSC 310 students. Students can create posts which can be either
a note or an answer-wanted question, categorizing them using tags.
A Piazza contribution includes every action from creating a post,
replying to a post, creating a new followup to an existing post, etc,
all of which are recorded with timestamps in this table.

Piazza contributions are identified by their cid which is a unique
identifier for each contribution entry. They also have several at-
tributes.

3.2.1 Categorical attributes
• is anonymous - True if post is created by anonymous contribu-

tor

2 categories (example: 0)
• kind - Contribution kind

12 categories (example: "followup")
• is project - True if contribution is tagged as project

2 categories (example: 1)
• anon id - De-identified id of the contributor

409 categories
(example: "07e7yyUGH4zoF+i5UF3PH9d...")

• post id - Unique identifier of the post the contribution was on

1436 categories
(example: "Ks43Y68znhtzXws8zNnDG...")

3.2.2 Ordered attributes
• created at - Timestamp of contribution

Ranges from 1610149993000 to 1620093785000 (example:
1619632354000)

2 Identifier hashes have been truncated to save line space in this paper.



3.3 Table queue visits
Aside from Piazza, TA-held office hours are also one resource stu-
dents use for issues that benefit from more synchronous, one-to-one
interaction. Access to TA assistance in office hours are regulated by
Queue@UBC, an online queue service simulating “lining-up” for
help. Each student seeking assistance would enqueue and wait for a
notification for their turn. A TA can view all the students currently
on the queue, and would pick one to “start answering” thereby
dequeuing them. Upon addressing the student’s question, the TA
would “finish answering”, recording answer finish. Note that con-
trary to a conventional queue, the TA need not follow FIFO order
strictly; this is to prioritize help for the students requiring more im-
mediate assistance.

Queue visits are identified by their qid which is a unique identi-
fier for each queue entry. They also have several attributes.

3.3.1 Categorical attributes
• anon id - Deidentified identifier of student asking question

409 categories
(example: "DjN2/LSrZHkxfxAk/ka8gIigB6...")

• answerer id - Deidentified identifier of TA answering question

27 categories
(example: "Nxw7gaFw+d2v0moktJ1dGKzd4Ix2...")

3.3.2 Ordered attributes
• enqueue - Timestamp of enqueue

Ranges from 1600386235000 to 1618015298000 (example:
1618005226000)

• dequeue - Timestamp of dequeue

Ranges from 1600386253000 to 1619307862000 (example:
1619307843000)

• answer start - Timestamp of when the TA starts answering

Ranges from 1600386239000 to 1618013723000 (example:
1618008486000)

• answer finish - Timestamp of when the TA finishing answering

Ranges from 1600386239000 to 1618016558000 (example:
1618004632000)

3.4 Table users
A deidentified user hash, anon id, corresponds to each student and
TA.

3.4.1 Categorical attributes
• withdrawn - True if the user withdrew from the course

2 categories (example: 1)

3.4.2 Ordered attributes
• first lab time - Timestamp of the user’s first lab. Null if user is

a TA

Ranges from 1610384400000 to 1610751600000 (example:
1610751600000)

4. Task Abstraction
We want to build a visualization dashboard that will help instructors
and TAs detect struggling students early on in a course (CPSC
310). To do so, they can use certain indicators correlated with some
outcome, for example low final grades, as red flags to identify the
students. These indicators may be some patterns dependent on the
following:

• Office hour visits
• Piazza contributions
• Auto-grading results

If a student happens to fulfill a red flag, then some intervention
may be helpful in keeping the student on track. Although these red
flags can be any arbitrary condition, we can also do some prior
analysis using previous years data to discover meaningful red flags.
To simulate making a prediction, there should also be a way to
restrict available data to a certain time-frame. We will also consider
calculating some statistics that may describe how well the indicator
predicts the outcome.

In order to accomplish this goal we introduce the following
high-level tasks

• T1: Discover indicators that identify students who are strug-
gling.

• T2: Evaluate and compare candidate indicators based on their
sensitivity, accuracy, stability, and speed (at identifying strug-
gling students).

5. Solution
Our solution allows instructors and TAs to perform rapid verifica-
tion on their hypothesized indicators of student struggles. It should
provide an intuitive means to visually confirm a certain pattern in
student data as a potential red flag leading to some unfavourable
outcome, thereby enabling course staff to step in at an earlier stage.
The instructors and TAs can use pre-proposed indicators of student
friction from previous studies to verify against their own course
dataset, but the visualization should also guide them to explore their
dataset and discover more red flags.

We propose a solution consisting of two main idioms

5.1 Circular Packing
An example of this view is shown in Figure 1.

• Outcome of interest is represented as a central circle
• Each indicator being verified is positioned as circles around the

outcome
• Students identified by each indicator (ie. belonging to the clus-

ter described by the indicator) are represented as sub-circles in-
side.

• The size of an indicator circle is proportional to the size of the
contained student cluster.

• Each indicator circle is colour-coded with saturation encoding
in the red hue, encoding its similarity to the outcome circle.
Similarity is defined by member containment: the indicator
cluster contains a student also present in the Outcome cluster.
This value should be binned into several saturation ranges to
avoid the problem of indistinguishable colour encoding.

• Outcome and identifiers to be verified can be configured in the
collapsible side panel.

• Interactions include zooming into a single cluster, dragging
(useful when many indicators are simultaneously visualized),
and potentially hovering to display more detailed information
about the cluster. The user can also interact with the time slider
to step through the evolution of each cluster in a specified time
interval.

5.2 Table
An example of this view is shown in Figure 2.



Figure 1. Circular packing view of 5 possible indicators of a failing final grade.

• The user navigates to a per indicator table visualization by se-
lecting the indicator circle in the circle packing of visualization
1.

• The categorical attributes are: students in the selected indicator
cluster on the vertical axis and the different indicators on the
horizontal axis. (NOTE: these indicators need not be part of
what was selected in visualization 1).

• The quantitative attribute of each cell is the derived value of
student data based on the indicator. Rows with students also
contained in the outcome cluster should be colour-coded with
red colour. Interactions include sorting on the indicator columns
and filtering on the rows.

• Further details of this visualization is currently under discus-
sion, but the goal is providing opportunities for explorations to
identify identifiers other than the set from visualization 1.

5.3 Scenario
Imagine yourself as an instructor for CPSC 310. It is currently mid-
term and your students have just passed their deadline for submit-
ting code for checkpoint 1 of the project, and AutoTest executed
test suites against each of their codebase to give an interim check-
point grade. It is a good time to evaluate how your students are
progressing in the course, and if any of them are showing signs of
struggle. You would want to identify struggling students and reach
out to them earlier so that they can make improvements toward the

end of the term. From the studies you have read previously, you
know that several factors are often proposed as causes of friction:

• Starting course assignment late
• Performing suboptimally on one of the earlier assignment
• Seeking assistance repeatedly in a short span of time

Now, if these indicators were verified to also be applicable to
CPSC 310, then a bulk of your work is complete. The rest of the
work involves identifying students with these particular character-
istics, which is comparably straightforward. You turn to Course
Friction Explorer for performing the work of friction verification
against datasets from the most recent course offering: 2019 Winter
Term. You’re most interested in knowing whether these proposed
friction indicators can actually identify students that have failed
the course in that term. So, in the circular packing visualization,
you set the ”Outcome” circle to be ”Students who received final
grades less than 50%”. Then, you add each one of the aforemen-
tioned characteristics as an indicator circle. These circles are, “Stu-
dents who started checkpoint 1 after Oct 1. 2019”, ”Students who
received AutoTest results of less than 50% on checkpoint 1”, and
”Students who create more than 5 piazza posts daily on average”.
After all the interested indicators are added, you notice the visual-
ization displays a central red circle corresponding to the Outcome
cluster, and three surrounding Indicator circles of different sizes.



Figure 2. Tabular view of the results of a specific indicator.

In particular, the circle corresponding to the indicator ”Students
who received AutoTest results of less than 50% on checkpoint 1”
is coloured with saturated red, very much similar to the colour of
the Outcome circle. You click into the particular indicator circle
to inspect the member students, and realize most of them are also
members of the Outcome circle. You perform the same verification
on datasets from multiple different past offerings, all leading to
this convergent result. At this point, you’re more confident of the
applicability of this indicator on CPSC 310.

Learning from this verification, you can make a preemptive
move of reaching out to your students from your current term
whose checkpoint 1 AutoTest result reported a failing grade.

5.4 Implementation Approach
We plan to implement our visualizations as a web application, from
multiple factors such as our familiarity with web technologies and
languages, it being platform agnostic, and easier potential integra-
tion with other services like user authentication. Tentatively, we
have selected python 3 for our data layer, and Flask. 4 as our back-
end framework. Python offers an abundance of data analysis li-
braries which will be a critical part of our solution, and Flask is
light-weight and above all, integrates with python well. For the

3 https://www.python.org/
4 https://flask.palletsprojects.com/en/2.0.x/

frontend we will be using React 5 and d3.js 6 for laying out our vi-
sualizations, user interaction and querying our backend. D3.js has
a well-established community with strong documentations and ex-
amples, and especially good customizability. We may also include
other frontend component libraries like Bootstrap 7 to expedite our
development process.

6. Milestones and Schedule
Table 1 displays the proposed development schedule of the Course
Friction Explorer from the initial planning to writing and submit-
ting the final paper. We are estimating a total of 81 person-hours on
task, with the main hours spent at implementing the Course Fric-
tion Explorer followed by writing the paper. However, estimating
and planning person hours on task tends to be very difficult and
error-prone. Therefore, we will be iteratively revising the alloca-
tion of hours, to confirm their accuracy or adapt where needed.

7. Discussion
This section is left blank in the proposal.

5 https://reactjs.org/
6 https://d3js.org/
7 https://getbootstrap.com/



Task Due date (Total Hr. / Per person) Description

1 Pitch Sep. 29 8/2 Create content and rehearse pitch

2 Proposal Oct. 21 28/9 Discuss the project, create illustrations and write
the project proposal

3 Learning and understanding
the tools

Oct. 28 40/10 Read the documentations and examples. Learn
how to use the tools and how they can interact.

- d3.js Oct. 24 16/4
- Flask Oct. 26 12/3
- Python Oct. 28 12/3

4 Project Update I Nov. 16 12/3 Prepare slides for the Project Peer Reviews

5 Project Update II Nov. 24 16/4 Prepare slide for the Post-Update Meeting and
demonstrate the prototype

6 Implementation Dec. 6 160/40 Implement and complete the Course Friction Ex-
plorer

- Backend: Setup, Data,
Configs, Querying, DSL

Nov. 11 60/15 Setup the environment, clean and work with the
data in the backend, do the configs and create
queries.

- Frontend: Circular pack-
ing, Table

Nov. 26 60/15 Implement the frontend by i.a. creating circular
packing and table models.

- Analysis Dec, 6 40/10 Generating additional properties people might
use

7 Draft of the final paper Dec. 8 20/5 Write draft of the final paper

8 Presentation Dec. 15 16/4 Prepare slides for the final presentation and talk-
ing points

9 Final paper Dec. 17 24/6 Finish the paper and include final changes and
conclusion

Table 1. Overview of project milestones and person hours allocated to each
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