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Intro: Android

» Most widely used Mobile OS
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® Android ™ Apple IOS = Samsung = Others

» 12,000 new android malware instances every day. unb


https://www.unb.ca/cic/datasets/andmal2020.html

Android Malware detection

» Machine learning based methods work great
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» Features more common in Malware applications should matter more.

On Benign Features in Malware Detection (Michael Cao et al. 2020)

Diagram above taken from Michael Cao’s presentation slides


chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/viewer.html?pdfurl=https%3A%2F%2Fpeople.ece.ubc.ca%2Fmjulia%2Fpublications%2FOn_Benign_Features_in_Malware_Detection_2020.pdf&clen=602845&chunk=true

Problem

» Malware applications evolve over time
» Evasion mechanisms exist

J

> Questions:
1. Do malware application features change over time?
2. Which features can boost Malware Detectors’ robustness?



Project Tasks

Collect App

Data

Goal: 2010 - 2020
Compile datasets on
the internet.

Do we need both
benign and malware
apps or both?

Extract
Features

L Which features
to focus on?

L Effect of feature
updates?

Visualize
Features

v' Malware app
feature drift
over the years
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Any feature trend
Which features are
consistent?

Which malware
groups rely on
which features?
How can we make
detectors robust?
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