Lecture: **Case Studies**, Reproducibility

Tamara Munzner

Department of Computer Science University of British Columbia

CPSC 547, Information Visualization 12 November 2020

http://www.cs.ubc.ca/~tmm/courses/547-20

Survey feedback

- mixed responses
- Q4/Q5: best and worst
 - -async online discussion
 - -in-class group work exercises during sync class time

2

Survey: QI

Q1 - This year for the virtual course we're doing discussion asynchronously in writing

instead of live by talking. When you think about how it's working vs a more traditional live

discussion are you (more, equal, less) satisfied?

Survey: Q3

Q3 - How helpful are the instructor's contributions to the asynchronous discussion that

are posted at the end of the week?

Survey: Q2

Q2 - This year for the virtual course we're mostly using the synchronous class time for in-

class exercises (and reportbacks plus discussion) with very minimal traditional live lecture

from the instructor. When you think about how it's working vs a more traditional live

lecture, do you think the ratio is:

Today: Lecture

- case studies
 - -Biomechanical Motion
 - -VAD Ch 15 (not assigned as reading)
 - Scagnostics, VisDB, InterRing, HCE, PivotGraph, Constellation
- Algebraic Design
- replicability crisis / credibility revolution

6

Biomechanical Motion

Interactive Coordinated Multiple-View Visualization of Biomechanical Motion Data Daniel F. Keefe, Marcus Ewert, William Ribarsky, Remco Chang.

Daniel F. Keefe, Marcus Ewert, William Ribarsky, Remco Chang. IEEE Trans. Visualization and Computer Graphics (Proc. Vis 2009), 15(6):1383-1390, 2009.

http://ivlab.cs.umn.edu/generated/pub-Keefe-2009-MultiViewVis.php

Biomechanical motion design study

large DB of 3D motion data

-pigs chewing: high-speed motion at joints, 500 FPS w/ sub-mm accuracy

- domain tasks
 - -functional morphology: relationship between 3D shape of bones and their function
 - -what is a typical chewing motion?
 - -how does chewing change over time based on amount/type of food in mouth?
- abstract tasks
 - -trends & anomalies across collection of time-varying spatial data
 - understanding complex spatial relationships
- pioneering design study integrating infovis+scivis techniques
- let's start with video showing system in action

https://youtu.be/OUNezRNtE9M

Multiple linked spatial & non-spatial views

- data: 3D spatial, multiple attribs (cyclic)
- encode: 3D spatial, parallel coords, 2D line (xy) plots
- facet: few large multiform views, many small multiples (~100)
 - -encode: color by trial for window background
 - -view coordination: line in parcoord == frame in small mult

[Fig 1. Interactive Coordinated Multiple-View Visualization of Biomechanical Motion Data. Daniel F. Keefe, Marcus Ewert, William Ribarsky, Remco Chang. IEEE Trans. Visualization and Computer Graphics (Proc. Vis 2009), 15(6):1383-1390, 2009.] 10

3D+2D

change

- -3D navigation
 - rotate/translate/zoom
- filter
 - -zoom to small subset of time

• facet

- -select for one large detail view
- -linked highlighting
- -linked navigation
 - between all views
 - driven by large detail view

[Fig 3. Interactive Coordinated Multiple-View Visualization of Biomechanical Motion Data. Daniel F. Keefe, Marcus Ewert, William Ribarsky, Remco Chang. IEEE Trans. Visualization and Computer Graphics (Proc. Vis 2009), 15(6):1383-1390, 2009.]

Derived data: traces/streamers

- derived data: 3D motion tracers from interactively chosen spots
 - -generates x/y/z data over time

-streamers

-shown in 3D views directly

-populates 2D plots

[Fig 4. Interactive Coordinated Multiple-View Visualization of Biomechanical Motion Data. Daniel F. Keefe, Marcus Ewert, William Ribarsky, Remco Chang. IEEE Trans. Visualization and Computer Graphics (Proc. Vis 2009), 15(6):1383-1390, 2009.]

Small multiples for overview

- facet: small multiples for overview – aggressive/ambitious, 100+ views
- encode: color code window bg by trial
- filter:
 - -full/partial skull
 - streamers
 - simple enough to be useable at low information density

[Fig 2. Interactive Coordinated Multiple-View Visualization of Biomechanical Motion Data. Daniel F. Keefe, Marcus Ewert, William Ribarsky, Remco Chang. IEEE Trans. Visualization and Computer Graphics (Proc. Vis 2009), 15(6):1383-1390, 2009.]

Derived data: surface interactions

derived data

-3D surface interaction patterns

• facet

-superimposed overlays in 3D view

- encoding
 - -color coding

[Fig 5. Interactive Coordinated Multiple-View Visualization of Biomechanical Motion Data. Daniel F. Keefe, Marcus Ewert, William Ribarsky, Remco Chang. IEEE Trans. Visualization and Computer Graphics (Proc. Vis 2009), 15(6):1383-1390, 2009.]

Side by side views demonstrating tooth slide

- facet: linked navigation w/ same 3D viewpoint for all
- encode: coloured by vertical distance separating teeth (derived surface interactions)
 - -also 3D instantaneous helical axis showing motion of mandible relative to skull

[Fig 6. Interactive Coordinated Multiple-View Visualization of Biomechanical Motion Data. Daniel F. Keefe, Marcus Ewert, William Ribarsky, Remco Chang. IEEE Trans. Visualization and Computer Graphics (Proc. Vis 2009), 15(6):1383-1390, 2009.]15

Cluster detection

- identify clusters of motion cycles -from combo: 2D xy plots & parcoords - show motion itself in 3D view
- facet: superimposed layers
 - -foreground/background layers in parcoord view itself

[Fig 7. Interactive Coordinated Multiple-View Visualization of Biomechanical Motion Data. Daniel F. Keefe, Marcus Ewert, William Ribarsky, Remco Chang. IEEE Trans. Visualization and Computer Graphics (Proc. Vis 2009), 15(6):1383-1390, 2009.]

Analysis summary

- what: data
 - -3D spatial, multiple attribs (cyclic)
- what: derived
 - -3D motion traces
 - -3D surface interaction patterns
- how: encode
 - -3D spatial, parallel coords, 2D plots
 - -color views by trial, surfaces by interaction patterns

- how: change
 - -3D navigation
- how: facet

 - -linked highlighting
 - -linked navigation
 - -layering
- how: reduce

-filtering

[Interactive Coordinated Multiple-View Visualization of Biomechanical Motion Data. Daniel F. Keefe, Marcus Ewert, William Ribarsky, Remco Chang. IEEE Trans. Visualization and Computer Graphics (Proc. Vis 2009), 15(6):1383-1390, 2009.]

-few large multiform views -many small multiples (~100)

Critique

- many strengths
 - -carefully designed with well justified design choices
 - -explicitly followed mantra "overview first, zoom and filter, then details-on-demand"
 - sophisticated view coordination
 - -tradeoff between strengths of small multiples and overlays, use both
 - informed by difficulties of animation for trend analysis
 - derived data tracing paths
- weaknesses/limitations
 - (older paper feels less novel, but must consider context of what was new)
 - scale analysis: collection size of <=100, not thousands (understandably)
 - -aggressive about multiple views, arguably pushing limits of understandability

Case Studies

19

Analysis Case Studies

Scagnostics

HCE

VisDB

PivotGraph

Constellation

Graph-Theoretic Scagnostics

scatterplot diagnostics

- scagnostics SPLOM: each point is one original scatterplot

[Graph-Theoretic Scagnostics Wilkinson, Anand, and Grossman. Proc InfoVis 05.]

Scagnostics analysis

System	Scagnostics
What: Data	Table.
What: Derived	Nine quantitative attributes (pairwise combination of origination)
Why: Tasks	Identify, compare, and summar and correlation.
How: Encode	Scatterplot, scatterplot matrix.
How: Manipulate	Select.
How: Facet	Juxtaposed small-multiple vie with linked highlighting, popup
Scale	Original attributes: dozens.

per scatterplot al attributes). rize; distributions

ews coordinated detail view.

VisDB

- table: draw pixels sorted, colored by relevance
- group by attribute or partition by attribute into multiple views

[VisDB: Database Exploration using Multidimensional Visualization, Keim and Kriegel, IEEE CG&A, 1994] ²³

VisDB Results

 partition into many small regions: dimensions grouped together

[VisDB: Database Exploration using Multidimensional Visualization, Keim and Kriegel, IEEE CG&A, 1994] ²⁴

VisDB Results

- partition into small number of views
 - -inspect each attribute

[VisDB: Database Exploration using Multidimensional Visualization, Keim and Kriegel, IEEE CG&A, 1994] ²⁵

VisDB Analysis

System	VisDB
What: Data	Table (database) with k attributes; que ing table subset (database query).
What: Derived	k + 1 quantitative attributes per orig query relevance for the k original attributes overall relevance.
Why: Tasks	Characterize distribution within attribution groups of similar values within attributes within attribute, find correlative tween attributes, find similar items.
How: Encode	Dense, space-filling; area marks in a out; colormap: categorical hues and luminance.
How: Facet	Layout 1: partition by attribute into per views, small multiples. Layout 2: pa items into per-item glyphs.
How: Reduce	Filtering
Scale	Attributes: one dozen. Total items: se lion. Visible items (using multiple vie tal): one million. Visible items (using 100,000

ery return-

ginal item: butes plus

bute, find bute, find lation be-

spiral layd ordered

er-attribute artition by

everal milews, in tog glyphs):

Hierarchical Clustering Explorer

- heatmap, dendrogram
- multiple views

[Interactively Exploring Hierarchical Clustering Results. Seo and Shneiderman, IEEE Computer 35(7): 80-86 (2002)]

HCE

- rank by feature idiom
 - ID list
 - -2D matrix

Order by	Score Overview	Ordered	List			Make	Views		Trans	pose>		
Normality	UACC091 6.207	Bank	ColumnName	Emor A	Min	01(25%)	Median	03(75%)	Max	Mean	Stdev A	2
	M93-007	1	UACC1097	2.089	-2.602	-0.322	0.185	0.897	5.065	0.359	0.993	
Umnibus Morvents Test	UACC127	2	5853	2.143	-3.767	-0.999	-0.516	0.036	5.541	-0.444	0.902	
texewnessiv prosts-3	M92-001	3	LIACC2837	2.286	-2.389	-0.582	-0.143	0.423	4.200	0.001	0.846	
1 4 2	UACC582	4	UACC1273	2.488	-1.750	-0.399	0.078	0.687	4.637	0.220	0.966	
Use Orig Values	M91-054	5	UACC091	2.504	-2.230	-0.554	-0.117	0.461	5.397	0.013	0.816	
Show Co of Plot	A-375	6	UACC827	2.548	-2.433	-0.633	-0.173	0.437	5.119	-0.023	0.915	
	UACC283	7	KA	2.754	-2.614	-0.770	-0.297	0.462	5.085	-0.052	1.061	
I Show Hit gram	UACC930	0	TC-1376-3	2.759	-2.712	-0.693	-0.211	0.543	6.027	0.009	1.029	
Show CE curve	M93-047	9	M93-007	2.792	-1.958	-0.468	-0.047	0.502	4.533	0.077	0.794	
	UACC827	10	A-375	2,069	-2.580	-0.654	-0.168	0.510	5.486	-0.001	0.953	
	0400903	11	UACC3149	3.004	-2.417	-0.506	0.029	0.798	5.658	0.230	1.085	
	UACC152	12	WM1751C	3.031	-2.190	-0.457	0.048	0.826	5.437	0.293	1.089	
	UACC309	13	NIL.C	3.037	-2.774	-0.491	0.064	0.845	5.969	0.285	1.127	
Ranking	UACC101	14	TD-1730	3.153	-2.846	-0.801	-0.281	0.733	6.025	0.130	1.359	9
	UACC253	15	TD-1723	3.159	-2.602	-0.784	-0.264	0.433	5.033	-0.061	1.073	14
Criteria	UACC383	16	UACC3093	3.216	-2.969	-0.675	-0.261	0.338	4.789	-0.101	0.851	
	SR83 2.089-	17	RMS13	3.264	-3.147	-0.726	-0.140	0.766	6.026	0.170	1.295	
	SRS5	18	TD-1375-3	3.318	-3.137	-0.608	-0.094	0.704	6.065	0.150	1.143	
	DATE MA	19	HA-A	3.327	-3.606	-0.867	-0.447	0.099	5.622	-0.319	0.890	
	MC TO-MA	20	UACC1256	3.402	-2.639	-0.527	-0.090	0.489	5.986	0.045	0.873	
	2089	21	TD-1638	3.412	-2.391	-0.652	-0.192	0.610	5.475	0.087	1.104	
	HUALL 1037 6-3	22	TC-HA	3.501	-3.152	-0.582	-0.088	0.567	6.043	0.050	0.925	
	KA	23	TC-MA	3.667	-2.710	-0.996	-0.527	0.159	5.611	-0.292	1.039	
	TD-1720	24	M92-001	3.720	-2.531	-0.715	-0.321	0.143	5.378	-0.234	0.746	
	TD-1638	25	M91-054	3.902	-2.542	-0.754	-0.308	0.290	5.360	-0.169	0.882	
	UACC1022	26	CRC1634	3.961	-2.971	-0.633	-0.143	0.557	6.054	0.093	1.064	
	UACC647	27	SRS5	4.080	-2.396	-0.596	-0.161	0.451	5.815	0.040	0.984	
	UACC3149	28	UACC647	4.163	-2.172	-0.499	-0.047	0.597	5.370	0.141	0.919	
	VVM1791C	29	M93-047	4.324	-2.053	-0.473	-0.027	0.645	6.062	0.171	0.951	l la la sur 🚽
	NIL C	30	UACC903	4.345	-2.498	-0.639	-0.252	0.328	4.852	-0.072	0.893	-2.60
	MCE10A	31	UACC502	4.506	-1.897	-0.575	-0.255	0.184	4.981	-0.141	0.683	12.00
	RMS13	32	UACC1012	4.524	-2.110	-0.715	-0.292	0.281	5.419	-0.151	0.856	Item Slid
	TD-1730	33	UACC930	4.537	-1.726	-0.374	0.087	0.762	6.049	0.286	0.965 🔳	

A rank-by-feature framework for interactive exploration of multidimensional data. Seo and Shneiderman. Information Visualization 4(2): 96-113 (2005)

HCE

A rank-by-feature framework for interactive exploration of multidimensional data. Seo and Shneiderman. Information Visualization 4(2): 96-113 (2005)

HCE Analysis

System	Hierarchical Clus
What: Data	Multidimensional t tributes (genes, c value attribute (ge
What: Derived	Hierarchical clust columns (for cluster rived attributes for attribute combinat tribute for each ran tribute combination
Why: Tasks	Find correlation b ters, gaps, outliers
How: Encode	Cluster heatmap, s plots. Rank-by-fea diverging colorma able 2D matrix or
How: Reduce	Dynamic filtering;
How: Manipulate	Navigate with pan
How: Facet	Multiform with line spatial position; or in overview popula
Scale	Genes (key attrik (key attribute): 80 (quantitative value 1,600,000.

stering Explorer (HCE)

able: two categorical key atconditions); one quantitative ne activity level in condition).

tering of table rows and er heatmap); quantitative der each attribute and pairwise tion; quantitative derived atnking criterion and original atn.

etween attributes; find clus-, trends within items.

scatterplots, histograms, boxature overviews: continuous ps on area marks in reorder-1D list alignment.

dynamic aggregation.

/scroll.

ked highlighting and shared verview-detail with selection ating detail view.

bute): 20,000. Conditions). Gene activity in condition e attribute): 20,000 \times 80 =

InterRing

[InterRing: An Interactive Tool for Visually Navigating and Manipulating Hierarchical Structures. Yang, Ward, Rundensteiner. Proc. InfoVis 2002, p 77-84.]

InterRing Analysis

System	InterRing
What: Data	Tree.
Why: Tasks	Selection, rollup/drilldown, hierarchy editing.
How: Encode	Radial, space-filling layout. Color by tree struc-
	ture.
How: Facet	Linked coloring and highlighting.
How: Reduce	Embed: distort; multiple foci.
Scale	Nodes: hundreds if labeled, thousands if dense. Levels in tree: dozens.

T

thousands if

PivotGraph

• derived rollup network

[Visual Exploration of Multivariate Graphs, Martin Wattenberg, CHI 2006.]

PivotGraph

[Visual Exploration of Multivariate Graphs, Martin Wattenberg, CHI 2006.]

PivotGraph Analysis

1
PivotGraph
Network.
Derived network of aggregate by roll-up into two chosen attrib
Cross-attribute comparison of r
Nodes linked with connection n
Change: animated transitions.
Aggregation, filtering.
Nodes/links in original network: up attributes: 2. Levels per several, up to one dozen.

nodes and links outes. node groups.

marks, size.

: unlimited. Rollroll-up attribute:

Analysis example: Constellation

- data
 - -multi-level network
 - node: word
 - link: words used in same dictionary definition
 - subgraph for each definition

 not just hierarchical clustering
 - -paths through network
 - query for high-weight paths between 2 nodes
 - quant attrib: plausibility

[Interactive Visualization of Large Graphs and Networks. Munzner. Ph.D. Dissertation, Stanford University, June 2000.]

[Constellation: A Visualization Tool For Linguistic Queries from MindNet. Munzner, Guimbretière and Robertson. Proc. IEEE Symp. InfoVis I 999, p. I 32-I 35.]

Using space: Constellation

- visual encoding
 - -link connection marks between words
 - -link containment marks to indicate subgraphs
 - -encode plausibility with horiz spatial position
 - -encode source/sink for query with vert spatial position
- spatial layout
 - -curvilinear grid: more room for longer low-plausibility paths

[Interactive Visualization of Large Graphs and Networks. Munzner. Ph.D. Dissertation, Stanford University, June 2000.]

a)

Using space: Constellation

- edge crossings
 - cannot easily minimize instances, since position constrained by spatial encoding
 - -instead: minimize perceptual impact
- views: superimposed layers
 - dynamic foreground/background layers on mouseover, using color
 - -four kinds of constellations
 - definition, path, link type, word
 - not just 1-hop neighbors

[Interactive Visualization of Large Graphs and Networks. Munzner. Ph.D. Dissertation, Stanford University, June 2000.]

Constellation Analysis

System	Constellation
What: Data	Three-level network of paths, so nitions), and nodes (word sense
Why: Tasks	Discover/verify: browse and le paths, identify and compare.
How: Encode	Containment and connection lin zontal spatial position for plaus vertical spatial position for ord color links by type.
How: Manipulate	Navigate: semantic zooming. mated transitions.
How: Reduce	Superimpose dynamic layers.
Scale	Paths: 10–50. Subgraphs: 1 Nodes: several thousand.

T

I-30 per path.

Change: Ani-

nk marks, horisibility attribute, ler within path,

ocate types of

ubgraphs (defies). Algebraic Design

40

What-Why-How Analysis

- expected in your paper/topic presentations - in addition to content summarization and general reflection
- expected in your final projects
- this approach is not the only way to analyze visualizations!
 - one specific framework intended to help you think
 - other frameworks support different ways of thinking
 - today's paper is interesting example!

Algebraic Process for Visualization Design

- which mathematical structures in data are preserved and reflected in vis
 - negation, permutation, symmetry, invariance

[Fig 1.An Algebraic Process for Visualization Design. Carlos Scheidegger and Gordon Kindlmann. IEEE TVCG (Proc. InfoVis 2014), 20(12):2181-2190.]

Algebraic process: Vocabulary

- **invariance** violation: single dataset, many visualizations -hallucinator
- unambiguity violation: many datasets, same vis

-data change invisible to viewer

confuser

• correspondence violation:

-can't see change of data in vis

• jumbler

- salient change in vis not due to significant change in data misleader
- -match mathematical structure in data with visual perception
- we can X the data; can we Y the image?

-are important data changes well-matched with obvious visual changes?

Algebraic process: Model

- D: space of data to be visualized
- R: space of data representations -r: mapping from D to R
- V: space of visualizations -v: mapping from R to V
- α : data symmetries
- ω : visualization symmetries
- commutative diagram
 equality between paths

 $v \circ r_2 \circ \alpha = \omega \circ v \circ r_1$

Algebraic process: Previous work tie-in

- Stevens data types: categorical, ordinal, quant (interval & ratio) -defined by symmetry groups and invariances
- Ziemziewicz & Kosara surjective/injective/bijective -injectivity: unambiguity
- Mackinlay's Expressiveness Principle -convey all and only properties of data
 - invariance/hallucinator, correspondence/misleader
- Mackinlay's Effectiveness Principle
 - -match important data attributes to salient visual channels
 - correspondence/jumbler, unambiguity/confuser
- Gibson/Ware affordances
 - -perceivable structures show possibility of action
 - correspondence

Algebraic process: Previous work tie-in, cont.

- Tversky Congruence Principle & Apprehension Principle
 - congruence: visual external structure of graphic should correspond to mental internal representation of viewer
 - -apprehension: graphics should be readily and easily perceived and comprehended
 - unambiguity and correspondence
- nested model
 - reason about mappings from abstraction to idiom
 - mathematical guidelines for abstraction layer

Reproducible and Replicable Research

Reproducible research

- 5: I 5 minutes with free tools
- 4: 15 minutes with proprietary tools
- 3: considerable effort
- 2: extreme effort
- I: cannot seem to be reproduced
- 0: cannot be reproduced

[Vandewalle, Kovacevic and Vetterli. Reproducible Research in Signal Processing - What, why, and how. IEEE Signal Processing Magazine, 26(3):37-47, May 2009.]

48

Why bother with reproducibility

- moral high ground
 for Science!
- enlightened self-interest
 - -make your own life easier
 - -you'll be cited more often by academics
 - -your work is more likely to be used by industry

49

Reproducibility: Levels to consider

- paper
 - -post it online
 - -make sure it stays accessible when you move on to new place
 - external archives are better yet (arxiv.org)
- algorithm
 - -well documented in paper itself
 - -document further with supplemental materials
- code
 - make available as open source
 - -pick right spot on continuum of effort involved, from minimal to massive
 - just put it up warts and all, minimal documentation
 - well documented and tested
 - (build a whole community not the common case)

Reproducibility: Levels to consider, cont.

- data
 - -make available
 - technique/algorithm: data used by system
 - tricky issue in visualization: data might not be yours to release!
 - evaluation: user study results
 - ethics approval possible if PII (personally identifiable information) sanitized, needs advance planning
- parameters
 - -how exactly to regenerate/produce figures, tables
 - example: <u>http://www.cs.utah.edu/~gk/papers/vis03/</u>

View from industry

 Increasing the Impact of Visualization Research panel, VIS 2017 -Krist Wongsuphasawat, Data Visualization Scientist, Twitter

https://www.slideshare.net/kristw/increasing-the-impact-of-visualization-research

Replication: crisis in psychology, medicine, etc

- early rumblings left me with (ignorable) qualms
 - -papers: Is most published research false?, Storks Deliver Babies (p= 0.008), The Earth is spherical (p < 0.05), False-Positive Psychology
- groundswell of change for what methods are considered legitimate
 - -out: QRPs (questionable research practices)
 - p-hacking / p-value fishing / data dredging
 - Hypothesizing After Results are Known (HARKing)
 - -in
 - replication
 - pre-registration
 - -brouhaha with bimodal responses
 - some people doubling down and defending previous work
 - many willing to repudiate (their own) earlier styles of working

Remarkable introspection on methods

- thoughtful willingness to change standards of field
 - -Andrew Gelman's commentary on the Susan Fiske article
 - http://andrewgelman.com/2016/09/21/what-has-happened-down-here-is-the-winds-havechanged/
 - Simine Vazire's entire Sometimes I'm Wrong blog
 - http://sometimesimwrong.typepad.com/
 - especially posts on topic Scientific Integrity
 - -Joe Simmons Data Colada blog post What I Want Our Field to Prioritize
 - <u>http://datacolada.org/53/</u>
 - -Dana Carvey's brave statement on her previous power pose work
 - http://faculty.haas.berkeley.edu/dana_carney/pdf_My%20position%20on%20power%20poses.pdf

When and how will this storm hit visualization?

• they're ahead of us

- -they have some paper retractions
 - we don't (yet) have any retractions for methodological considerations
- -they agonize about difficulty of getting failure-to-replicate papers accepted
 - we hardly ever even try to do such work
- -they are a much older field
 - we're younger: might our power hierarchies thus be less entrenched??...
- -they are higher profile
 - we don't have vis research results appear regularly in major newspapers/magazines
- -they have rich fabric of blogs as major drivers of discussion
 - crosscutting traditional power hierarchies
 - we have far fewer active bloggers
- replication crisis was focus of BELIV 2018 workshop at IEEE VIS
 - -evaluation and BEyond methodoLogIcal approaches for Visualization
 - -<u>http://beliv.cs.univie.ac.at/</u>

