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Fig. 1: Overview of our proposed literature survey tool, README. The left panel shows a hierarchical view of papers categorized
based on venue and sub-fields/topics. The middle panel highlights the various automatically inferred sub-fields for a particular
venue. The right panel provides an overview of all the papers currently visualized in the hierarchical view. Clicking any paper opens
up the recommendation view, which is shown in Figure 7.

Abstract—Literature review is an integral element of academic research, enabling researchers to learn about and build on existing
work. Traditionally, this involves manually going through various published articles, either through following the citations in a reference
paper, or via keywords on sites like Google Scholar. This process can often be tedious, and there is a high likelihood of missing out on
certain related literature, owing to the sheer volume of publications every year. In addition, analyzing the advances and progression in
a field requires a holistic view, which manual iteration over papers lacks. To this end, we propose README, an interactive tool aimed to
aide with literature reviews. README provides a holistic view of papers published over multiple years by automatically grouping them
into clusters, where each cluster signifies a sub-field, thus allowing for a more structured exploration. In addition, given a reference
paper the user is interested in, README also identifies and recommends relevant papers. Our current implementation uses papers
from four machine learning conferences, but our tool can easily be extended to accommodate other domains and conferences.

1 INTRODUCTION

Literature reviews are crucial components to sustainable academic re-
search. The knowledge of existing research provides a stable foundation
to build upon, while simultaneously avoiding redundancy, facilitating
improvements, and enabling meaningful contributions. Despite its im-
portance, by far the most common way to conduct literature search is
to manually sieve through large collections of papers, one at a time,
to find work that is relevant. This exploration is done either via hop-
ping through references within a paper, or using keywords to retrieve
information from engines like Google Scholar. Due to the plethora of
published work, this approach is often extremely time intensive and
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increases the possibility of missing out on relevant research.
Similar to [17, 22], we believe that effective visualization support

for literature review can greatly benefit the scientific community. We
argue for the need of a specialized framework that allows researchers
to only focus on a few pertinent publications when deciding what to
read next, while simultaneously providing a aggregated overview of
the topic diversity in a particular field at a glance, saving both time and
effort.

To this end, we propose README: an interactive literature review
tool aimed at making surveying relevant research papers easier. For
a particular research conference, README allows users to explore
a wide range of papers published over multiple years. Additionally,
publications are automatically grouped into sub-fields, thus allowing for
papers targeting similar problems to be viewed at a glance. Comparison
between different grouping criteria is also supported, enabling users to
obtain a broader perspective of their fields of interest. The answer to the
question “What should I read next?” often requires an exhaustive search



through available literature. To make this is process easier, README
recommends a small number of publications that might be relevant to
the paper the user has expressed interest in. This is achieved using a
custom similarity and coverage based relevance algorithm. Figure 1
provides an overview of the proposed framework.

This paper is structured as follows: we first list the hypotheses our
work assumes. We then we describe the dataset and task abstractions,
explain our relevance algorithm, and discuss the elements of our pro-
posed visualization. Finally, we list relevant literature, and talk about
the shortcomings of our framework and provide an intuition for future
work.

2 HYPOTHESES

In this section we detail the hypotheses assumed to allow for an effective
and efficient implementation of our proposed prototype.

H1: Each paper p can be converted into a high dimensional vector
embedding ep, where the embedding is expressive enough to capture
the semantics of the paper. That is, closeness of two papers in the
resulting high-dimensional space also implies relevance of the papers
to each other.

H2: Each paper p can be represented as a combination of certain
base topics t i; i ∈ [1,n]. Intuitively, one can imagine the information
contained within p to be a pie. Topic t i

p would then represent a slice of
the pie.

H3: Given a query paper q, a set of candidate publications P =
{p1, p2, . . . , pk} are considered “relevant” if: i) for each i, epi and
eq are close in the high dimensional embedding space, and ii) for each
topic t i ∈ q, there is at least one paper pi ∈ P that contains topic t i, i.e.
the set of relevant papers P span the space of topics in q.

H4: Each paper p can be assigned to a single topic t p. Even though
such a hard assignment might not be ideal in situations where p has
multiple relevant topics, it allows for a tree-like hierarchical structure
that is easy to parse and visualize.

The details on how these hypotheses translate to the visualization
are described in the later sections.

3 DATA

There is a large selection of publications freely available online. Even
though one could, in principle, scrape this data from the web, we instead
use the publicly available DBLP dataset [18, 20] for feasibility.

DBLP is a network dataset, where each node is a paper, and a
directed link between two nodes implies a citation relationship. More
specifically, for two nodes A and B, a link from A to B implies paper
B cites paper A. In its 11th version1, the DBLP dataset has about
4,107,340 papers (nodes) and 36,624,464 citation relationships (links).
In addition to its size, another advantage of using this dataset is the
minimal amount of data wrangling required as the dataset is already
curated.

Additionally, each node has certain attributes pertaining to the paper.
Some of the important attributes include

• Paper ID (Key Attribute): Each paper has a unique id that allows
for easy indexing of paper details.

• Paper Venue (Categorical Attribute): The venue denotes the con-
ference where the paper was published.

• Year (Quantitative Attribute): This denotes the publication year
for each paper.

• Paper Authors (Categorical Attribute): This denotes the authors
for the corresponding paper.

• Field of Study (Categorical Attribute): The domain of each paper
is summarized using certain keywords, where each keyword can
be thought of as an area of research.

1https://www.aminer.org/citation

• Field of Study Probability (Quantitative Attribute): For each
field of study (FOS) within a paper, there is also an associated
probability indicating the accuracy of the corresponding FOS for
that particular paper.

• Citation Count (Quantitative Attribute): The number of times
the corresponding paper has been sited. It should be noted that
the number of outgoing links from a node is often less that the
citation count.

• Paper Title and Abstract: The title and abstract for the correspond-
ing paper. Note that the dataset does not contain the full paper
content.

3.1 Derived Data
To make the data suitable for use in our framework, we perform certain
transformations and reductions over the base DBLP Citation Network
dataset [18, 20]. We now describe these in detail, linking some of them
to the hypotheses mentioned in Section 2 for improved understanding.

3.1.1 Data Filtering

The 11th version of DBLP Citation Network dataset contains about
four million papers. It is cumbersome to perform any kind of analy-
sis or visualization on such a large scale dataset. For feasibility, we
filter papers by choosing publications from conference venues that are
targeted towards machine learning and its applications. More specif-
ically, we choose four venues: ‘Computer Vision and Pattern Recog-
nition (CVPR)’, ‘Neural Information Processing Systems (NeurIPS)’,
‘Empirical Methods in Natural Language Processing (EMNLP)’, and
‘Association for Computational Linguistics (ACL)‘. These choices
were motivated by the fact that our research interests lie in these areas,
which in turn makes it easier for us to analyse the effectiveness of our
framework. After filtering, we obtain a total of 28,382 papers.

3.1.2 Quantitative attribute: High Dimensional Embedding
Hypothesis H1 assumes that each paper p can be represented as a high
dimensional embedding ep. As the DBLP dataset does not provide
the full paper content, we use the abstract field of each paper p as a
proxy to obtain ep. An off-the-shelf pre-trained language model called
SciBERT [2] is used to obtain these high dimensional embeddings. As
SciBERT is trained over a corpus of scientific text, it is more suitable
to our task when compared to other language models. Each word
within the abstract of a paper p is first converted to a 768-dimensional
representation using the transformer [21] module within SciBERT. The
representations over all words within the abstract are then averaged to
obtain the high dimensional embedding ep.

3.1.3 Quantitative attribute: 2-D coordinates
Even though the embeddings computed in Section 3.1.2 allow for com-
parisons in the high dimensional space, they are not feasible for the
purposes of visualization. We therefore use the dimensionality reduc-
tion technique t-SNE [12] to convert the 768-dimensional embeddings
into a 2-dimensional (x,y) representation.

3.1.4 Categorical attribute: Latent topics
Hypothesis H2 presumes that each paper p can be represented using
several topics t i. The goal here is to identify a collection of words,
which grouped together, constitute a particular topic in p. As each
topic modeling approach has its benefits and disadvantages, we utilize
two different approaches to obtain topics for each paper p. Both of
these are used in our visualization, thus providing the user with a better
understanding of each paper’s domain. For brevity, we denote t i as
the ith topic in both approaches, and correspondingly α i

p indicates the
probability of topic t i being present in p.

Learned Topics: Using the abstracts for all papers in the reduced
dataset, we leverage a probabilistic topic modeling approach called
Latent Dirichlet Allocation (LDA) [4] to learn a set of 30 data-specific
topics t i; i ∈ [1,30]. Additionally, for each paper p, LDA also provides
probability scores α p = [α1

p, . . . ,α
30
p ] where α i

p ∈ [0,1].

https://www.aminer.org/citation


Paper id 2806265408 2560535692
Venue neural information processing systems computer vision and pattern recognition
Year 2018 2017

Authors Simon S. Du, Wei Hu, Jason D. Lee Frank Michel, Alexander Kirillov, Eric Brachmann, Alexander 
KrullStefan Gumhold, Bogdan Savchynskyy, Carsten Rother

Field of Study Gradient descent, Artificial neural network, Matrix 
decomposition, Discretization, …

3D pose estimation, RANSAC, Conditional random field, Small 
number, Graphical model, …

Citation Count 1 11

Paper Title Algorithmic Regularization in Learning Deep Homogeneous 
Models: Layers are Automatically Balanced Global Hypothesis Generation for 6D Object Pose Estimation

Abstract

We study the implicit regularization imposed by gradient 
descent for learning multi-layer homogeneous functions 
including feed-forward fully connected and convolutional deep 
neural networks with linear, ReLU or Leaky ReLU activation. 
We rigorously prove that gradient flow (i.e. gradient descent 
with infinitesimal step size) effectively enforces the differences 
between squared norms across different layers to remain 
invariant without any explicit regularization. This result implies 
that if the weights are initially small, gradient flow 
automatically balances the magnitudes of all layers. Using a 
discretization argument, we analyze gradient descent with 
positive step size for the non-convex low-rank asymmetric 
matrix factorization problem …

This paper addresses the task of estimating the 6D-pose of a 
known 3D object from a single RGB-D image. Most modern 
approaches solve this task in three steps: i) compute local 
features, ii) generate a pool of pose-hypotheses, iii) select and 
refine a pose from the pool. This work focuses on the second 
step. While all existing approaches generate the hypotheses 
pool via local reasoning, e.g. RANSAC or Hough-Voting, we are 
the first to show that global reasoning is beneficial at this stage. 
In particular, we formulate a novel fully-connected Conditional 
Random Field (CRF) …

Fig. 2: Examples of DBLP Citation Network Dataset. For each data, it contains the paper id, venue, published year, authors, field of study,
number of citations, title and abstract of the paper. Due to the space limitation, we only show a portion of the abstract.

Field of Study: The DBLP Citation Network Dataset [18] additionally,
for each paper p, provides a “field of study” (FOS) value. We assume
FOS to be derived from some alternate topic modeling approach, and
use these FOS as topics in our framework. Each FOS value is also
associated with a probability, which indicates the likelihood of that
FOS being present in p.

3.1.5 Categorical attribute: Cluster Assignment

Following Section 3.1.4, although each paper p is represented using
several topics t i, following H4, we assign each paper to a single topic
cluster. Such a hard assigned enforces a strict hierarchical structure,
which allows for easier exploration and understanding as each paper
can only be in one cluster. Each paper p is assigned to a cluster c,
where,

c = argmax
i

α
i
p (1)

4 TASK DESCRIPTION

The overarching goal of this project is to build a framework that helps
with the process of literature reviews. We envision the users of our tool
to have access to a paper, or a list of papers, or have a notion of the
sub-field they are interested in. Contrary to [17] that assume users to
always have access to a seed paper, our premise is much more general.
We expect users of our tool to be mainly looking for answers to two
fundamental questions: i) What has already been tried in this field?, and
ii) What should I read next? Our visualization, therefore, is designed to
assist the user at different levels of such queries.

Understanding the existing state of research in a particular field is a
key task for a researcher. The user needs to be able to do so efficiently
under different scenarios. If the user has research sub-field in mind,
they need to be able to explore the corresponding sub-field and analyse
the papers contained within in a semantically meaningful way. In the
situation where the user has a seed paper in mind, they still need to the
capability to explore similar papers in the same domain.

A second important task a researcher is to figure out what papers to
read next. Preferably, given a paper they are interested in, they need a
curated list that has a small number of highly relevant papers. Going
through this small list will save them both time and effort.

To this end, in terms of our visualization framework, we are creating
a tool that allows a user to explore papers and sub-fields, query spe-
cific papers of interest for recommendations, and facilitate comparison
between different recommendation criteria to provide a more holistic
overview. To be more specific,

1. Explore. Our tool enables exploration at different query levels,
ranging from a coarse conference-level query, to a research sub-
field level, to an even finer query level such as a paper itself.
It allows users to conduct this exploration in a semantically in-
formed way, where relevant papers are shown at all exploration
levels.

2. Query. Given a seed paper, our tool allows the user to obtain a
set of recommended papers which are relevant to the seed paper,
thus assisting in narrowing down search for what to read next.

3. Compare. Our tool empowers users with a choice to select and
compare between different recommendation and sub-field ag-
gregation criteria since no single criterion is always correct and
relevant (alluding to no free lunch theorem in ML). We support
two ways of identifying sub-fields: using field of study directly
from the data or using latent topics extracted in an unsupervised
way.

Table 1 details the analysis of README according to the What-
Why-How framework [16].

5 RECOMMENDATION ALGORITHM

A key objective of README is to recommend a set of relevant publica-
tions, given the user has expressed interested in a particular paper. We
will refer to this user selected paper as the seed paper. As described in
Section 2, H3 provides our assumed definition for relevance. Particu-
larly, for a set of papers P to be recommended, we require the following
two criteria to hold: i) each paper in P must be close to the seed paper,
and ii) P should span the space of topics defined by the seed paper. We
now provide details regarding how these two criteria are realized.

5.1 Closeness to the Seed Paper
As described in Section 3.1.2, we convert each paper p to a high
dimensional embedding ep. The advantage of such a transformation,
assuming it is expressive enough to capture the semantics of each paper,



System README

What: Data Network Data
- Papers as Nodes
- Citation relationship as Links

What: Derived Attributes for each node
- Quantitative Attribute: High Dimensional Embedding
- Quantitative Attribute: 2-D node coordinates
- Categorical Attribute: Topics
- Categorical Attribute: Cluster Assignment

Why: Tasks Discover and Locate similar nodes (papers),
Query nodes of interest to obtain suggestions for other relevant nodes,
Compare between different values for categorical attributes (Topics and Cluster Assignment)

How: Encode Express nodes and categorical attribute (Topics) using spatial position and point marks,
Express nodes and categorical attribute (Topics) using vertical bar chart and list idiom

How: Facet Juxtaposed views for better navigation and comparison

How: Manipulate Reorder data,
Navigate through different hierarchical levels,
Animated transitions

How: Reduce Filter relevant nodes (papers)

Scale 20,000+ papers across 4 venues

Table 1: Analysis of README according to the What-Why-How framework [16].

is that it allows us to mathematically define “closeness” between two
papers.

Particularly, given two papers p and q, the closeness spq between
them can be computed as the distance between their corresponding
embeddings ep and eq. Specifically,

spq =
1

||ep− eq||
(2)

spq now serves as a quantitative attribute defining ‘closeness’, where
a larger value indicates that p and q are ‘close’, and a smaller value
indicates the opposite.

5.2 Topic Coverage

Currently, the most common way to search for relevant papers is
through search engines like Google Scholar. For a user, the process
involves coming up with a keyword that is relevant to their seed paper
or field, and then going through the list of results shown by the search
engine. More often than not, these results include the keyword that the
user provided. Such a keyword centric approach has two limitations: i)
the onus of finding the right keyword that effectively summarizes the
domain of a seed paper falls on to the user, and ii) papers containing a
particular keyword might not cover all the aspects of the seed paper. As
an example, if the seed paper encompasses topics like ‘object detection’,
‘few-shot learning’, and ‘transfer learning’, obtaining papers using the
keyword ‘object detection’ might lead to an incomplete exploration of
the domain.

We therefore propose a coverage based recommendation criterion
to address the aforementioned issues. The objective is to suggest a
handful of papers that cover the high likelihood topics for a seed paper.
As described in Section 3.1.4, let αq = [α1

q , . . . ,α
n
q ] be the topic scores

computed for a seed paper q. Additionally, let tτ
q ⊆ [t1, . . . , tn] be the

set of topics where α i
q > τ and τ is a positive threshold. Our aim then is

to find a set of publications P = {p1, . . . , pk} such that for each t i ∈ tq
τ ,

there exists at least one pi ∈ P where pi has a high α i
pi

value indicating
that topic t i is present in paper pi. That is, we want to recommend a

set of papers P where all high likelihood topics in the seed paper q are
represented.

5.3 Complete Algorithm
Our complete recommendation algorithm combines the properties of
the two criteria described in Sections 5.1 and 5.2. The closeness crite-
rion ensures that the recommended papers are relevant, and the topic
coverage criterion ensures that the recommended papers cover all key
domain aspects of the seed paper.

In practice, the algorithm proceeds as follows,

1. Given a seed paper, we first obtain a list of 100 closest papers S
using the criterion described in Section 5.1.

2. For the same seed paper, we filter out the top-3 most probable
topics from the set of all available topics using the probability
scores α

q
i . This forms the set tq

τ .

3. For each topic t i ∈ tq
τ , we select 3 papers from the list of 100 clos-

est papers S, such that each of the 3 papers has a high probability
of containing topic t i. This follows from the coverage criterion
described in Section 5.1.

4. Finally, these 9 papers are recommended to the user.

The choice of recommending only 9 papers is done to ensure that the
user is not overwhelmed by a large number of suggestions. The user
can now denote more time on going in-depth through each paper, rather
than having to skim through a larger number of suggestions. If the
user deems any of the recommendations useful, they can use the our
algorithm again on a new seed paper to obtain more suggestions.

6 DESIGN SOLUTION

Our proposed tool README addresses two key objectives,

1. The ability to explore publications over the years in one place,
where the publications are automatically grouped into sub-fields
to enable easier search.



Fig. 3: Faceted Exploration View. (a) shows the hierarchical exploration view. Additional details on navigating this view are provided in
Section 6.1.1. (b) shows the topic list view. A user has the ability to add/delete/filter the topics shown in (a). (c) shows the paper list view. A user
has the ability to filter/navigate to a specific paper in (a).

2. The capability to find and suggest a handful number of relevant
papers, aiding in the process of deciding what to read next.

To this end, keeping the aforementioned goals in mind, our visualization
can be divided into two different views: i) the exploration view and
ii) the recommendation view. In addition, our tool is interactive, thus
allowing users to seamlessly navigate between various views. In the
following sections, we discuss these two views in detail.

6.1 Exploration View
Contrary to existing tools such as [1] that visualize all available papers
in a single view, a key decision in our design is to impose a hierarchical
ordering on paper exploration. Our proposed hierarchy in shown in
Figure 8. Instead of having to navigate a large collection of papers at
once, as in [1], such a hierarchical ordering offers multiple advantages,

1. It reduces visual clutter as all papers are not shown at once.

2. It provides the user with additional relevant information about the
domain of each paper without making them read through it.

3. It provides a broad understanding of the popularity of various
sub-fields, thus providing an intuition as to where research is
thriving.

Fig. 8: Imposed hierarchy on papers.

The exploration view builds around this hierarchical ordering. As our
visualization shows papers across multiple years and conferences, we
make the choice to facet the data into multiple views (Figure 3). In
the following sections we first describe the hierarchical view, and then
discuss the linked list view.

6.1.1 Hierarchical View

Figure 4 shows the overall flow in the hierarchical view. The user
initially has access to different venues (Figure 4 (a)), where each venue
is denoted by a point mark. The size channel indicates the number
of papers in each venue, and color is used as an additional channel
to help distinguish between venues. The position channels do not
encode any information, but rather just ensure that the venue marks are
non-overlapping.

Clicking the point mark corresponding to a venue reveals the topic-
view (Figure 4 (b)). Each topic is represented as a point mark, where
the size again encodes the number of papers within the topic. The
assignment of a paper to a topic follows the procedure described in
Section 3.1.5. To enable better comparison between topics, the position
channel is modified such that related topics are located close to each
other. For each topic, the details regarding the computation of its x and
y positional coordinates is further explained in Section 6.1.3. To ensure
consistency and reduce cognitive load, the color channel encodes the
venue.

Finally, clicking the point mark corresponding to a topic reveals
the paper-view (Figure 4 (c)). We use concentric circles to highlight
the granularity of exploration the user is currently at. The outer circle
displays the venue, and the inner circle displays the current topic the
user is navigating. Each paper is represented as a point mark. Similar
to the topic-view, the position channel is intended to indicate closeness
between papers. For each paper, we use the t-SNE coordinates ex-



Fig. 4: Hierarchical View. (a) shows various venues which the users can click to reveal the topic view (b). (b) shows various topics within a
particular venue where similar topics are placed nearby. Users can click on any topic in (b) to reveal all the contained papers, which can be seen
in (c). Similar papers in (c) are placed nearby, and hovering on a paper reveals a tooltip with paper information. Clicking on a paper shows the
recommendation view. The red arrows indicate the navigation flow.

tracted in Section 3.1.3 as the x and y positional coordinates. A tooltip
provides additional details about each paper when the paper point mark
is hovered over.

6.1.2 List View

As the exploration view supports 20,000+ papers across different
venues and years, having just the hierarchical view by itself would
make the process of surveying different fields extremely tedious. There
are several problems that contribute to this,

1. Even though the topic view (Figure 4(c)) visually provides an
intuition of paper similarity and topic allocation, the user would
need to individually hover over all point marks to get additional
information about various papers present in the view.

2. The hierarchical view, by itself, does not allow filtering papers via
keywords, or directly traversing to a paper the user is interested
in.

To address the aforementioned issues, we facet the data into a two
additional list views that are linked to the hierarchical view. These lists
serve two distinct goals: one allows the user to interact with data on
the granularity of individual papers, while the other allows interaction
on the topic level. The design choice of a list idiom was additionally
motivated by the improved readability it affords.

Paper List View: The paper list view is juxtaposed to the hierarchical
view as shown in Figure 3(c). It allows users to directly interact with
data on the level of individual papers, while simultaneously supporting
searching and filtering capabilities for additional flexibility. Figure 5
highlights the different components of the paper list view, which are
also explained below.

1. Examine: As shown in Figure 5(d), each element in the examine
block corresponds to a paper, which is identified by the title,
author names, venue, year of publication, and topic assignment.
Additionally, the color channel is used as a strip on the left to
denote the venue. By default, the examine block automatically
filters papers based on the users exploration, wherein only papers
accessible via the current hierarchical view (Figure 3(a)) state are
shown. As an example, if the user selects a particular topic ‘image
segmentation’ within the venue ‘CVPR’, the examine block will
only show papers that were published in ‘CVPR’ and belong to the
cluster ‘image segmentation’. Additionally, clicking an element
in the examine block alters the hierarchical view, modifying it
such that the clicked paper is in view. This integration between
the two views allows the user to directly traverse to the paper of
choice, foregoing the need for a tedious search.

2. Search: Using the search bar (Figure 5(a), the user can filter
papers using any keyword. The search supports partial matching,
wherein the keyword can be a part of the title, author name, venue,
year of publication, or the topic assigned to the paper. The search
results are dynamically updated in the examine block (Figure
5(d)).

3. Filter: Using the filter block (Figure 5(b)), a user can quickly
filter papers based on the venue, or use the ‘Current Selection’
option filters papers based on the current state of the hierarchical
view (Figure 3(a)). In addition, the sorting options allow arranging
the filtered papers in ascending or descending order, based on
title, year of publication, or topic name.

4. Paper of Interest: When navigating the paper-view (Figure 4(c)),
the hovered over paper is highlighted in red as the paper of interest



Fig. 5: Paper List View. (a) shows the search bar that supports partial
matching based on keywords. (b) shows various quick filter options, and
allows sorting the filtered papers using different criteria. (c) shows the
current paper the user has selected or hovered over in the hierarchical
view. (d) lists the papers obtained after various filtering or searching
criteria are applied.

(Figure 5(c)). This allows a user to quickly see all the important
information regarding the paper in a readable format.

Topic List View: The topic list view is juxtaposed to the hierarchical
view as shown in Figure 3(b). It enables interaction with topic level
data, allowing users to directly add or remove certain topics from
the hierarchical view (Figure 3(a)). Figure 6 highlights the various
components within the topic list view. These are further detailed below.

1. Examine: The examine block lists all automatically extracted
topic clusters for the current venue. A vertical bar chart visually
encodes the number of papers within each topic cluster. By de-
fault, the chart is sorted in descending order to highlight the more
dense topic clusters. The number to the left of each list element
in the chart corresponds to the point mark label in the hierarchical
view (Figure 3(a)). As an example, ‘Image Segmentation’ would
have a point mark with the label ‘1’ in the hierarchical view. Ad-
ditionally, each topic cluster is associated with a checkbox that
allows the user to add or remove topic clusters from the hierarchi-
cal view . For example, if the user checks the box corresponding
to ‘Object Detection’, an additional point mark labelled ‘3’ would
appear in the hierarchical view. Finally, clicking any element in
the list opens the paper-view (Figure 4(c)) for that topic cluster.

2. Search: Similar to the paper list view, the search bar (Figure
6(a)) allows users to search topics using keywords. The search
bar supports partial keyword matching, wherein the keyword can
be a part of the topic name. The search results are dynamically
updated in the examine block (Figure 6(d)).

3. Filter: The filter block (Figure 6(b)) enables quick sorting of
topic clusters via name or count of papers within each cluster.
Additionally, as mentioned in Section 4, README supports com-
parison between different clustering criteria. As no clustering
criterion is perfect, this provides users with a more holistic under-
standing of the various domains in a particular research field. Our
current implementation currently supports two clustering criteria:
‘Field of Study (FOS)’ and ‘LDA Topic Modeling’. The details

Fig. 6: Topic List View. (a) shows the search bar that supports partial
matching based on keywords. (b) allows the user to switch between
two clustering criteria, and allows sorting the filtered topics. (c) shows
the topic that the user has selected or hovered over in the hierarchical
view. (d) lists the topics obtained after various filtering or searching
criteria are applied. A checkbox also allows the user to add or remove
topics from the hierarchical view.

on how these clusters are computed are provided in Section 3.1.
The ‘Show FOS’ makes field of study topic clusters visible in the
hierarchical view (Figure 3(a)), and additionally updates the ex-
amine block (Figure 6(d)) to reflect the same. The ‘Show Topics’
button is analogous in behaviour, but for LDA topic modeling
clusters.

4. Topic of Interest: When navigating the topic-view (Figure 4(b)),
the hovered over topic cluster is highlighted in red as the topic of
interest (Figure 6(c)). This provides additional information about
the topic name and number of papers contained within.

6.1.3 Positional Coordinates for Topic Clusters
The topic view (Figure 4(b)) visually encodes topic clusters as point
marks. As mentioned in Section 6.1.1, the position channel is intended
to encode the relative closeness between topics. We now describe how
the x and y positional coordinates for each topic cluster are computed.

For a particular topic t i, let Ci be the set of papers assigned to the
cluster t i. Note that this cluster assignment is done according to the
criterion described in Section 3.1.5. The positional coordinates for t i is
then defined as,

x =
1
|Ci| ∑

p∈Ci

px; y =
1
|Ci| ∑

p∈Ci

py (3)

where px and py are the x and y t-SNE [6] coordinates for a paper in
the set Ci. The details on the computation of these t-SNE coordinates
are described in Section 3.1.3.

6.1.4 Reducing Point Collisions
In the hierarchical view, both the topic view (Figure 4(b)) and paper
view (Figure 4(c)) use the position channel to encode relative close-
ness between entities. For topics, the computation for the positional
coordinates are described in Section 6.1.3. For papers, the t-SNE [6]
coordinates, as described in Section 3.1.3, are used as the positional
coordinates. Naively using these coordinates, however, leads to a high
number of collisions between the point marks, thus making interpreta-
tion and reasoning much harder.

To this end, we incorporate certain heuristics to reduce the number
of collisions.



(a)

(b)

(c)

Fig. 7: Recommendation View. Pop-up window for paper details and recommendations. (a) shows additional details of the selected paper. (b)
shows paper exploration within assigned topic and allows comparison between two different clustering criteria. Users can hover over or click on
the point marks to check similar papers within the cluster. (c) shows three papers recommendations for each topic relevant to the selected paper.
The colour channel is used to reduce cognitive overhead and help to associate the papers to their corresponding topic clusters.

1. Random Jitter: For each topic or paper, we add a random
jitter to its positional coordinates. The amount of jitter is kept
sufficiently small as to not induce any false trends.

2. Radial Scaling: The topic cluster and papers are visualized
within a circular idiom. To further reduce collisions, we apply a
radial scaling on the point marks to push them closer towards the
circle boundary. This heuristic is motivated by observation that in
a circular idiom of radius r, moving two points a and b radially
outwards from the center increases the distance between them.
This property is illustrated in Figure 9. The heuristic proceeds as
follows,

(a) All the points in the current view are translated such that
the mean of their positional coordinates is (0,0).

(b) The circular idiom is divided into four quadrants, as shown
in Figure 9.

(c) Within each quadrant q ∈ [1,4], we find the point aq that is
the farthest from the center (0,0). The point aq decides the
amount of radial scaling that will be applied to the quadrant
q.

(d) If dq is the distance of the point aq from the center (0,0),
the new coordinates (p′x, p′y) for the point (px, py) located
in quadrant q is computed as

p′x = px +
px · fq√
p2

x + p2
y

; p′y = py +
py · fq√
p2

x + p2
y

(4)

where fq = r−dq, where r is the radius of the circle idiom.

One concern with using such a scaling is that it might remove
correlations between entities that are closer to the center. However,
we did not observe this phenomenon in our dataset.

Fig. 9: Radial Scaling. Moving the red and blue points radially out-
wards increases the distance between them, therefore decreasing over-
lap. To ensure maximum reduction in collisions, the circular idiom is
divided into four quadrants, and radial scaling is applied separately to
points within each quadrant.

6.2 Recommendation View

Complementary to the exploration view, the recommendation view
enables a user to delve into, in greater detail, a paper they might have
interest in. This paper can either be selected through exploration, or
through prior knowledge. The exploration view, which can handle both
these scenarios through faceted views, can direct the user to their paper
of choice.

Clicking on the corresponding point mark in the paper view (Figure
4(c)) reveals a pop-up window showing the recommendation view
for the selected paper. This view is shown in Figure 7. The paper
content details, including abstract, are shown to provide additional
information (Figure 7(a)). For the cluster the selected paper is assigned



Fig. 10: Explore: a user case study. Please refer to Section 7.1 for additional details. A user with the intention of browsing through the vis first
(a) makes a choice of a conference, which then takes the user to a faceted view (b) of research sub-fields present in the conference. The user can
then search (b) for a sub-field in the topic list view. Clicking on any topic will show the semantically related papers (c). Finally, the user can
explore similar papers from other conferences using the search and filter functionalities of the paper list view (d), enabling them to make an
informed decision for exploring further.

to, the recommendation view also allows for a side-by-side comparison
between the two clustering criteria (Figure 7(b)). For each criterion, all
the papers assigned to the selected paper’s cluster are visualized using
point marks. A tooltip reveals additional details about each paper on
hover, and the user can jump to the recommendation view for any paper
by clicking its corresponding point mark. The choice of a juxtaposed
view is made to facilitate easy comparison. The left side shows clusters
obtained using the ‘field of study’ criterion. The right side similarly
denotes clusters for the ‘LDA Topic Modeling’ criterion. Even though
we make the design choice of using a hard cluster assignment to force a
hierarchical ordering (Section 3.1.5), a vertical bar chart is additionally
shown to provide the user with some intuition of the selected paper’s
topic distribution (Figure 7(b)).

Finally, for each clustering criterion, we suggest a small number of
papers using the recommendation algorithm described in Section 5. For
each criterion, the recommendations are faceted into two views (Figure
7(c)).

1. On the left, a point mark visually encodes each paper. The posi-
tion channel indicates relative closeness, and the color channel
encodes cluster name. The user can open the recommendation
view for any of these papers by clicking its corresponding point
mark.

2. On the right, a list provides an easy-to-read view of all the recom-
mendations. The color of the strip visually encodes the cluster
name. Similar to the other facet, the user can open the recommen-
dation view for any of these papers by clicking its corresponding
list element.

The juxtaposed view again allows for easy comparison between the
recommendations obtained from different clustering criteria.

6.3 Alternate Design Solutions
We considered some alternate design solutions to before converging on
the one described in Section 6. Here we detail other ideas, and discuss
possible reasons as to why they are unsuitable for our problem.

Scatterplot With Link Marks: As the dataset is in the form of a cita-
tion network, our initial thought was to visualize all the papers using a
point mark, akin to [1]. An additional interactive interface that would
then allow the user to select a particular paper, which would in turn
superimpose line marks linking the selected paper to its recommen-
dations. Similar to Section 3.1.2, this would involve deriving a high
dimensional representation from each paper, and then reducing this
dense representation to a two dimensional feature space. These 2D
points could then be visualized as a scatterplot. The immediate down-
side of this naive approach was the visual clutter, even with a subset of
the total number of papers (∼ 5000).



Fig. 11: Suggest: a user case study. Please refer to Section 7.2 for
additional details. A user with the goal of getting recommendations for
a seed paper can directly search for that paper in the paper list view (a).
Clicking on the search result will direct the user to a view showing the
semantically related papers to the seed paper (b). Finally, clicking on
the seed paper point mark will show some relevant recommendations
(c), which the user can explore further.

Graph with Link Marks: To solve the aforementioned issue, our
next idea was to require the user to provide a query or seed paper.
This query paper would be the basis for the recommendation, thus
removing cognitive overload when looking at all papers in a scatterplot.
Borrowing inspiration from [14], the query paper would be represented
as a point mark, with links going in the upwards and downwards
direction, connecting the query paper to suggested papers. This process
would be recursively applied, where the suggested papers would be
further connected to their suggestions. The Y-axis would encode time,
where the most recent paper would be on the top. As a seed paper is
required, this design limits the ability of a user to explore a particular
field. We believe that, more often than not, users have a good sense of
the research fields they are interested in. Providing them the option to
go through different papers in this selected field provides them with
a holistic view of the research diversity, thus aiding in the process of
paper selection. In addition, the recursive graph generation could lead
to visual cluttering as the size of the graph increases exponentially with
each level.

Our proposed solution tries to address the issues of the two alternate
solutions. The faceted exploration view (Figure 3) allows the user to
view broad topic clusters and traverse through them without being over-
loaded with information. The recommender view (Figure 7) suggests
relevant papers based on a selected query (which could come from
exploration or prior user preference), enabling comparison between
different criteria, thus further aiding the user in research.

7 CASE STUDY

We now present a couple of scenarios that highlight two important
aspects of our workflow. The first scenario describes how a user, with
no specific paper in mind, can navigate through our system to obtain
better overview of their research field. The second scenario talks about
a user that already knows the paper they are interested in, and just want
to obtain some suggestions on what to read next.

7.1 Scenario 1
John is a PhD student in the field of Computer Vision. He works
in the field of detection, and wants some ideas for his next project.
Therefore, he wants to look at existing work in the field of detection
to get a better sense of where the research community is currently at.
He uses README to help him with this task. Being familiar with
the CVPR conference, he decides to explore it first. Clicking on the
CVPR point mark shows him the topic view, where he is presented
with some of the popular topics in the exploration view. As he is only
interested in detection, he uses the search tool bar in the topic list,
and is presented with a filtered list. Looking at the vertical bar chart,
he easily notices that there is already a whole bunch of work in the
areas of ‘object segmentation’ and ‘feature detection’. However, the
area of ‘face detection’ is relatively unexplored. He then clicks on the
list element corresponding to ‘face detection’ and is presented with
an overview of all the papers contained within. He can visually see
sub-clusters and certain outlier by looking at the positional encoding of
the paper point marks.

After browsing through some of these papers, he realizes there are
some decent avenues for exploration in the field of ‘face detection’.
To get a complete overview, he then wants to look at papers on ‘face
detection’ across multiple machine learning conference. He simply
goes to the paper list, clicks on the ‘Filter by: All’ button and searches
using the keyword ‘face detection’. He is presented with a filtered list
of all the papers that have face detection as their assigned topic in a
easy to read format, which he then filters by the conference ‘NeurIPS’
to look at all the published papers related to ‘face detection’. This
workflow is illustrated in Figure 10.

7.2 Scenario 2
Susan is a machine learning PhD student working with random forest
models. She has read through the paper titled ‘Robust Visual Tracking
Using Oblique Random Forests’, and wants to get suggestions on what
to read next. She uses README to help her with this task. Instead
of using the exploration view, she directly searches for the paper she
is interested in using the paper list view. Clicking on the paper in the
filter list navigates her to the target paper. She can now visually look at
all the papers that are categorized under the topic ‘random forest’. But
as she wants some recommendations for her seed paper, she clicks on
its corresponding point mark, revealing the recommendation view. In
this view, she can easily compare between different recommendations,
and can navigate to any of the suggested papers by just clicking on the
corresponding element. She can iterate through this process any desired
number of times. This workflow is illustrated in Figure 11. For clarity,
we additionally list all the recommendations for the seed paper in Table
2. It can be seen that, in addition to ‘random forest’, the seed paper
Susan selected also delved into ideas from topics like ‘convolutional
neural networks’ and ‘pose’. To provide a more complete view and help
Susan in making a more informed decision, our algorithm additionally
also provides some suggestions from these topics.

8 RELATED WORK

Existing works in literature review have used vis to show citation
relationships among papers [13, 19]. Such works aim to provide an
information-dense view by avoiding node-link layouts. Citeology [13]
chooses to explicitly encode generations of citations in a tree-based
view. CiteVis [19] uses IEEE InfoVis conference papers to draw up
an year-based breakdown of papers cited by a selected paper and its
citations together. Although such works are based explicitly on citation
relations, our work considers semantic relations and emphasize on
content based exploration which may not be present in citation graph
of a paper. Other works incorporate use of faceted views with the
aim to link information in different formats. PaperLens [10] uses a
faceted view with histograms to show meaningful information and
trends. FacetLens [11] extends faceted browsing by also making it
easier to display trends and compare between them. In our work, we
also employ faceted browsing between 2D visual coordinates of papers,
list of topics and list of papers.



Paper type Paper title

Selected paper Robust Visual Tracking Using Oblique Random Forests

Latent Topic 1
[‘Demonstrate Effectiveness’, ‘Benchmark Datasets’]

Recommended paper 1 Unsupervised Metric Fusion By Cross Diffusion
Recommended paper 2 Latent Hierarchical Structural Learning For Object Detection
Recommended paper 3 When VLAD Met Hilbert

Latent Topic 2
[‘Neural Network’, ‘Convolutional Neural Network’]

Recommended paper 1 Boosting Domain Adaptation By Discovering Latent Domains
Recommended paper 2 LiteFlowNet: A Lightweight Convolutional Neural Network For Optical Flow Estimation
Recommended paper 3 Single-Image Crowd Counting Via Multi-Column Convolutional Neural Network

Latent Topic 3
[‘Synthetic Real’, ‘Image Sequences’]

Recommended paper 1 On-line Semi-Supervised Multiple-instance Boosting
Recommended paper 2 Decoupling Sparse Coding With Fusion Of Fisher Vectors And Scalable SVMs For Large-Scale Visual Recognition
Recommended paper 3 Fast Concurrent Object Localization And Recognition

FOS Topic 1:
‘Random Forest’

Recommended paper 1 End-to-End Training Of Hybrid CNN-CRF Models For Stereo
Recommended paper 2 Feature-Independent Action Spotting Human Localization, Segmentation, Or Frame-wise Tracking
Recommended paper 3 Sparse Recommendations Of Image Gradient Orientations For Visual Recognition And Tracking

FOS Topic 2:
‘Pose’

Recommended paper 1 Volumetric 3D Tracking By Detection
Recommended paper 2 SemiContour: A Semi-Supervised Learning Approach For Contour Detection
Recommended paper 3 Leveraging Structure From Motion To Learn Discriminative Codebooks For Scalable Landmark Classification

FOS Topic 3:
‘Robustness (Computer Science)’

Recommended paper 1 Discriminative Learning Of Visual Words For 3D Human Pose Estimation
Recommended paper 2 Computationally Efficient Regression On A Dependency Graph For Human Pose Estimation
Recommended paper 3 Global Hypothesis Generation For 6D Object Pose Estimation

Table 2: Suggest: a user case study. Recommendations for a particular paper are shown. The recommendations are made using Field of Study
(FOS) present in the data and Latent topics extracted using LDA [4]. Three most probable papers in each category is displayed.

Task Est. hours Actual hours Est. completed date Actual completed date Workload distribution
Ideating over project ideas 10 12 Sept 20 Sept 25 RG SHC SK

Project proposal pitch slides 3 3 Oct 1 Oct 1 RG SHC SK
Project proposal pitch video recording 3 2 Oct 1 Oct 1 RG

Literature survey 20 22 Oct 20 Oct 22 RG SHC SK
Project proposal report writing 10 10 Oct 23 Oct 23 RG SHC SK
Project direction finalization 4 3 Oct 24 Oct 25 RG SHC SK

Finalizing dataset 6 6 Oct 24 Oct 25 RG SHC SK
Data gather and filtering 15 17 Oct 28 Oct 30 SHC

Data pre-processing 25 30 Nov 4 Nov 7 RG
High dimensional embedding 10 12 Nov 7 Nov 10 RG SHC SK

Topic modeling 15 15 Nov 14 Nov 14 RG SK
Project updates report writing 6 8 Nov 18 Nov 18 RG SHC SK
Design of the exploration view 35 40 Dec 1 Dec 5 SK

Design of the recommendation view 25 30 Dec 5 Dec 7 SHC SK
Project final presentation slides 5 7 Dec 10 Dec 10 RG SHC SK

Project final presentation video recording 6 6 Dec 10 Dec 10 RG
Final project report writing 15 21 Dec 14 Dec 14 RG SHC SK

Table 3: Milestones. Milestone specifications and rough hour estimates. RG: Raghav Goyal, SHC: Shih-Han Chou, SK: Siddhesh Khandelwal.

Content-based exploration uses a semantic similarity measure to
recommend papers. Citeomatic [3] uses a nearest-neighbor approach for
a query and paper similarity where the query can any text. On the other
hand, our approach takes query as a paper and loses some generality.
ForeCite [9] employs heuristics and identifies concepts by using number
of citations as an additional information, where the intuition is that a
popular concept often has a paper that is disproportionately cited. Our
approach takes a simpler route and relies on semantics extracted by a
pretrained language model [2]. PaperQuest [17] proposes a multi-level
filtering of relevant papers together with user’s interest and preference.
However, in this work we consider a single-level decision based on
user’s query only.

From visualization perspective, a 2D scatter plot of papers formed
using a dimensionality reduction technique such as t-SNE [12] or
UMAP [15] is not new and has been used extensively to visualize
related papers where closeness in 2D space represents similarity [1, 7].
ICLR Paper Explorer [1] uses an interactive scatter plot where hovering
over a paper point mark produces its title, author and a representative
figure. Adjutant [7] goes a step further to form topic clusters from
related papers in an unsupervised fashion that allows for topic-based
exploration. In this work, we also support topic-based exploration,
however we have two criterion for topic extraction: one taken from
metadata (Field of Study) and the other extracted in an unsupervised
manner [4], with an aim to increase coverage. Recently, Covid-19
pandemic has sparked a lot of research work making the need of a
literature review system ever more crucial. SciSight [8] creates a user
query based graph of authorship connections. A node or ‘card’ in the

graph denote a research area, authors associated with the area and their
affiliations. This lets users to make sense of who is working on what.
In our work, we represent clusters as the centroid of the papers within
them, however inter-cluster relations is something that can be explored
as future work.

9 IMPLEMENTATION DETAILS

The implemented framework has two main components, the first being
the preprocessing and deriving additional data, and the second being
the front-end visualization. We discuss the implementation details of
these two components in detail.

9.1 Preprocessing and Derived data

We use Python language2 for this part of our work. We generate data for
each conference separately which contains papers and their references
in a single file. For each paper, we extract features based on a pretrained
language model SciBERT3 by feeding in abstracts to the model. We
then reduce the dimensions of the resulting features by using t-SNE4

and choosing perplexity and learning rate to be 20 and 100 respec-
tively. We use GPU-accelerated version of t-SNE and feature extraction
pipeline so as to have a reasonable runtime for thousands of papers. For
topic discovery, we use public implementation of LDA [4] from scikit-

2https://www.python.org
3https://github.com/allenai/scibert
4https://github.com/CannyLab/tsne-cuda

https://www.python.org
https://github.com/allenai/scibert
https://github.com/CannyLab/tsne-cuda


learn5. We build a corpus out of abstracts from papers with vocabulary
of top 500 terms with bigrams and trigrams only since single words did
not give meaningful topics. Also we use standard stop words lists to
filter out some of commonly occurring words in English, and extended
it to our case to include words such as [’paper’, ’presents’,
’propose’, ’approach’, ’outperform’]. We extract 30 topics
for each conference. For recommendation part, we select 100 nearest-
neighbours of each paper based on euclidean distance, and make rec-
ommendations for top-3 topics based on field of study and latent topics.
All this data is then parsed to json format for visualizing.

9.2 Frontend Application

The frontend application is implemented as a webpage. Most of the
functionality in our visualization interface is implemented from scratch
on top of D3.js library [5], with the exception of the topic and paper list
view. These list views, including the search and filter functionalities,
are implemented on top of the list.js library 6. All animations and
interactions are implemented using a combination of D3.js, Javascript,
and jQuery 7. Their implementation is based on listening to browser
events (like click and mouse-over) and updating the application state
accordingly. The entire visualization interface is shown on a single
page, and any changes are shown through smooth transitions. The
recommendation view is implemented as a pop-up window to prevent
the user from having to navigate multiple pages.

Instead of implementing a database server, for simplicity and given
the amount of time we had, the frontend application directly uses
the pre-processed json format files for the purposes of visualization.
Making the use of a sophisticated server that can be queried is one of
the future directions to explore.

10 DISCUSSION AND FUTURE WORK

README aims to aid the process of literature reviews. Based on our
personal experiences, with the exponential growth in the number of
publications in fields like machine learning over the recent years, it is
becoming increasingly difficult to keep track of all relevant research.
The motivation behind README was to put forth a framework allows
users to effectively explore through a large number of papers, while
simultaneously helping them answer the tricky question of what to read
next.

Contrary to existing tools like [1], one of the main strengths of our
work is the imposition of hierarchical ordering on exploration. We
believe that it is easier for users to categorize research in terms of
sub-fields and venues. Additionally, we think researchers would prefer
only seeing research from their areas of interest rather than papers
from all fields, which is the case in [1] and also in various conference
proceedings.

We additionally feel that paper recommendation systems, in addition
to relevance, should also focus on the ‘coverage’ criterion. That is,
suggestions to the user should take into account all the aspects of a
particular paper, and not just use metadata or citation relationships.
To that end, our proposed recommendation algorithm is a step in this
direction. Though the algorithm isn’t perfect, we believe this is a good
starting point for future exploration.

Our work is not without its own set of limitations. For one, it still
does not scale well to millions of papers, as even the hierarchical view
gets too crowded with more number of papers being assigned to a
single topic. In our current implementation, the recommendations
for a particular paper only come from the same venue. We envision
scaling this to incorporate different venues in the future. Additionally,
our recommendation algorithm might miss some relevant papers as
it relies on custom closeness and coverage heuristics. Even though
we expect it to perform reasonably well, more experimentation and
analysis is required to have a better understanding. Finally, using
t-SNE [6] to obtain the positional coordinates for papers and topic

5https://scikit-learn.org/stable/index.html
6https://listjs.com
7https://jquery.com

clusters might induce incorrect correlations, leading to users inferring
inaccurate trends within the data.

For future work, one of our priorities is to facilitate trend analysis
through a dedicated visualization. More specifically, we want to aide
the understanding of the evolution of a field over time, and simultane-
ously look at the impact of a particular paper on the field itself. We
feel this additional information would greatly help users in their paper
selection process. We also want to improve upon our recommenda-
tion algorithm, particularly by incorporating citation count into the
algorithm formulation. Intuitively, highly cited papers have a greater
influence on the research community, and therefore should be preferred
when suggesting what to read next. Additionally, to improve flexibil-
ity, we also want to give the user control over which criteria to use
in the recommendation algorithm based on their needs. Finally, our
implementation, in its current state, is not deployable. This can be
attributed to the use of locally pre-processed files and non-responsive
web interface. In the future, we would like to integrate a database that
can be queried on the fly, and incorporate support for different screen
resolutions.

11 CONCLUSION

We propose README, an interactive visualization aimed at helping
users with the process of literature reviews. Our tool allows users
to explore a wide range of papers, taken from different venues and
ranging across multiple years, all in one place. Our design choice
of a hierarchical ordering helps with reducing visual clutter, while
simultaneously enabling users to look and compare between papers
within a topic at a glance. Faceted views with different search and
filtering options makes going through a large number of papers much
easier. Finally, for a particular paper of interest, we suggest what to read
next by recommending a handful of papers generated using a custom
coverage and relevance based algorithm.
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