# AMR-TV: Antimicrobial Resistance Transmission Visualizer

### Background

# AMR (antimicrobial resistance)

Bacterial populations with genes that provide resistance against antibiotics

AMR transmission

Horizontal gene transfer (hgt) between populations

### Possible workflow for monitoring AMR transmission routes



- -1. Identify potential routes by comparing AMR genes across populations
- 2. Validate potential routes using phylogenetic sequence comparison techniques

 $\rightarrow$  Hard to do when dealing with thousands of rows in tabular datasets  $\neg$ 

GOAL: develop solution for finding and visualizing *potential* routes of AMR transmission from tabular data

# 1. NCBI Isolates Browser (~700k data items!)

| isolate        | organism_group | create_date | location     | isolation_source   | host         | amr_genotypes                     |
|----------------|----------------|-------------|--------------|--------------------|--------------|-----------------------------------|
| PDT000873649.1 | C. jejuni      | 2020-10-08  | USA:FL       | raw intact chicken |              | {blaOXA}                          |
| PDT000857925.1 | Enterobacter   | 2020-10-30  | USA: Midwest |                    | Homo sapiens | {ant(2")-la, <b>blaOXA</b> ,fosA} |
| PDT000862009.1 | C. jejuni      | 2020-10-19  | USA:TN       | chicken carcass    |              | {blaOXA}                          |
| PDT000858659.1 | Enterobacter   | 2020-10-08  | Northeast    | blood              | Homo sapiens | {aph(3")-lb,aph(6)-ld,blaACT-17}  |

# 2. Derived network (DN)

#### Nodes

Unique organism\_group-amr\_genotypes combination Attributes = organism\_group, amr\_genotypes, min\_date

Directed link between node A and node B if:

- A.min\_date < B.min\_date
- A.amr\_genotypes ⊆ B.amr\_genotypes



High-level tasks: summarize and identify species connected to an outbreak

Filter NCBI Isolates Browser by create\_date range to form DN

Summarize # of links between DN nodes belonging to different organism\_groups

Mid-level tasks: explicitly visualize transmission routes

Further filter DN by organism\_group values of interest

Explicitly visualize resulting DN topology, or node-link paths

#### Low-level tasks: gain further detail on each transmission event

Map DN nodes back to NCBI Isolates Browser to:

- Identify sampled pathogens involved in potential AMR transmission routes
- Gain further context (location, host, isolation\_source)

High-level tasks: summarize and identify species connected to an outbreak Adjacency matrix

Mid-level tasks: explicitly visualize transmission routes

Node-link (NL) diagram

Low-level tasks: gain further detail on each transmission event Table

# **DEMO TIME**

| Strengths            |                       |
|----------------------|-----------------------|
| Easier to parse that | an tabular data alone |

Novel solution to automatically visualizing hgt networks of this scale

# Weaknesses

Inconsistent data standards reduce context (location, isolation\_source, host)

DN nodes don't represent single populations (transmission w/in nodes?)

# Lessons learned

I made two unrealistic domain assumptions when making DN links:

- 1. Bacteria must transmit all their AMR genes during hgt
- 2. hgt directionality can be inferred through date of detection

To get around these, sequence comparison MUST be more intimately involved in the visualization process, rather than used for post-hoc validation of NL diagram

# Future work

#### Allow users to upload their own files:

Common vocabulary to standardize ALL fields

- No missing context
- Use host and location information when mapping nodes

#### Ditch the faulty assumptions from the last slide:

Validate/filter links with sequence comparisons BEFORE visualization

Why?

- Considering events where bacteria may have transferred a subset of their AMR genes drastically increases DN size (hard to visualize without filtering)
- Need new indicator of directionality

# **Questions?**

# Monitoring AMR transmission

Difficult to parse from tabular data (visualization solution needed)

Current visualization solutions ignore hgt or inadequate:



Goal: create scalable visualization solution specifically for horizontal transmission

### **DN Cardinality**

| Filters                              | # of nodes | Avg # of edges per node |
|--------------------------------------|------------|-------------------------|
| None                                 | ~77k       | Unknown                 |
| Oct 2020                             | ~5k        | ~17                     |
| Oct 2020; <i>Enterobacter</i>        | 190        | ~5                      |
| Oct 2020; Enterobacter and C. jejuni | 384        | ~8                      |
| Oct 1 2020; Salmonella Enterica      | 439        | ~20                     |

#### \_\_\_\_ # of NCBI Isolate Browser data items mapped to DN nodes

| Min | 1  |
|-----|----|
| Мах | 93 |
| Avg | ~9 |