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1 INTRODUCTION
Mobile smart phones have become increasingly popular in the past

decade. As a matter of fact, the number of smart phone users are

expected to nearly double from 2016 to 2021 [16]. While smart

phones bring many benefits to a user’s life, their adoption has also

greatly stimulated the growth of mobile malware. In particular, the

Android market is a vulnerable target for malicious users due to its

open sourced nature and large user market.

A number of approaches have recently emerged to support An-

droid malware detection [1, 3, 8, 13]. Most of the proposed ap-

proaches rely on extracting application features and training a

machine learning classifier to distinguish between the benign and

malicious classes. Benign applications are easily collected and can

be considered as an unlimited source. On the other hand, malware

applications are often limited and difficult to find in practice. When

training a classifier, practitioners often collect as many malware

applications as possible and randomly sample from the unlimited

benign pool. Training on such data is likely to create a highly sepa-

rable classifier model.

A highly separable model clearly distinguishes between the be-

nign and malware classes—often providing high performance re-

sults when detecting applications from the same distribution as

training. The model will often will learn highly distinguishing fea-

tures that are associated with the benign or malware class. While a

highly separable model provides high performance results, it trades

off reliability as a result. Malware can easily use the highly distin-

guishing benign features by adopting similar functionalities from

the benign applications to disrupt the model’s detection rate. In fact,

recent studies have shown that simply injecting benign features

into malware can substantially reduce the malware detection rate

of a highly separable model from 94% to 67% [4].

We hypothesize that the classifier trained using benign appli-

cations similar to the malware will reduce the number of highly

distinguishing benign features and produce a less separable model

as a result. While less separable models are more resilient to the be-

nign feature injection attack, we suspect that the overall detection
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power to distinguish between the benign and malware classes to

decrease. Varying the similarity of benign applications could possi-

bly tune the trade-off between performance and reliability of the

model. To confirm this fact, we would like to build a visualization

tool to effectively explore this hypothesis. In particular, we aim to

visualize the characteristics of different training data sets to study

the relationship between data selection, the reliability of a model,

and the resulting performance of a model.

2 RELATEDWORK
2.1 Android Application Visualizations
Existing visualization tools for Android applications focus on An-

droid malware. These works are divided into two categories: (1)

visualizations that help security analysts locate malicious behav-

iors [9, 15, 19], and (2) visualizations of Android malware families

[9].

Yan et al. [19] presented a visualization framework to assist mal-

ware analysts in statically locate the malicious code. The proposed

tool first prunes an app’s function call graph into sub graphs that

contain suspicious behaviors, and visualize the graphs using a force-

directed scheme. A set of interactions are provided for malware

analysts to verify and further dissect the code block related to suspi-

cious behaviors. Ganesh et al. also presented a visualization toolbox

[15] designed to efficiently display program artifacts in manual

malware analysis. They encoded the hierarchical class structure

using containment marks, and allowed the user to abstract call

sequences to a higher level by changing the visualization scope. To

help researchers locate malicious behaviors while running the app,

De Lorenzo et al. [6] presented a ML-based framework trained to

classify blocks of execution traces related to malicious behaviors.

After deployment, it monitors and visualizes the maliciousness of

execution traces through a temporal bar chart.

Clustering Android malware into different families based on

their malicious behaviors can also help malware analysts prevent

attacks from malware variants. Gonzales et al. [9] applied various

dimension reduction techniques to project high dimensional traffic

data of malware applications to 2D, and visualized the results using

scatter plots. By comparing the results from different projection

functions, they identified differentiating traffic patterns among

malware families.

To the best of our knowledge, only Rory et al. [5] have pre-

sented a tool to study similarities between benign and malware

applications. They measured the distance among applications in

the feature space and used a circular dendrogram to visualize the

hierarchical relationships among applications. Malware analysts

can easily infer the distance between applications by locating them

on the dendrogram, and understand the classification results from

classifiers trained on the same applications.
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2.2 Dataset Visualizations
Over the years, an abundance of work has been proposed to incor-

porate visualization into the machine learning process. Most have

focused on providing visualizations to help users explore correla-

tions between features, or provide an interaction interface to keep

users in the loop and improve the reliability of the model. Only a

few tools [11, 12, 14, 18] have been proposed to help users inves-

tigate training data set characteristics, or examine relationships

between the training data and resulting model properties.

Patel et al. presented a visualization framework [14] to under-

stand properties of the training data. Their tool helps users identify

noteworthy examples, by exploiting the classification results based

on multiple trained model instances. The Profiler [12] system pro-

posed by Kandel et al. automatically flags problematic data using

datamining techniques. The authors present results of their flagging

process by using coordinated summary visualizations that support

interactions and links to assess detected anomalies. Wongsupha-

sawat et al. [18] presented a tool to help analysts in discovery by

offering recommendations of potentially interesting visualizations

on particular features. The tool also generates coordinated views

given a user’s partial specifications. In addition, Google launched

the web interface FACETS [10] for users to visualize their high-

dimensional machine learning data. It offers two visualizations:

“Facets Overview” and “Facets Dive”. “Facets Overview” produces

summary statistics over each feature, and compares the distribu-

tions over training and testing data. “Facet Dive” provides an inter-

active interface for users to sort and examine individual applications

in the data. Hohman et al. [11] pointed out that understanding the

data should be of equal importance as understanding the model.

They describe that it is crucial to evaluate the quality of training

data and monitor the performance of the model. They presented a

visualization interface, “CHAMELEON”, which integrated multiple

coordinated views to help researchers compare the trained model

over different data sets.

3 DATA AND TASK ABSTRACTION
In this section, we describe our task abstractions in the context of

terminologies introduced in Visualization Design and Analysis.

3.1 Tasks
At a high level, wewould like to provide a tool that helps researchers

in analyzing the relationship between characteristics of the training

data and properties of the resulting model. In detail, the tool can

assist the researcher in achieving the following tasks:

• Visualize the application distributions in an intuitive manner.

• Evaluate the similarity between benign/malware applica-

tions based on user selected features, and identify similar

or distinguishable applications. The similarities between be-

nign and malware training applications influence a model’s

performance and reliability.

• Filter and visualize the application feature distributions over

a selected set of applications. Patterns in feature usage dis-

tributions over applications assist the malware researcher in

identifying key features to better differentiate applications.

• Construct a training data set from the total application pool.

Table 1: What-Why-How-Analysis-Table

What: Data Tabular, binary-valued attributes and sparse

What: Derived

Dimension reduced sample values (applying relative dis-

tance preserving DR). Pair-wise sample similarity (e.g. Eu-

clidean distance, Cosine similarity, Jaccard Coefficients)

Why: Tasks

Explore training data sets, visualize characteristics of user

selected subset of data sets. Evaluate the performance of

the model (e.g. detection rate, robustness under attack).

Track how model change when using different data sets

How: Encode Scatter plots, Bar charts, Line charts, Table

How: Facet Multiform, overview-detail

How: Reduce Filtering on the samples, filtering on the features

How: Embed Pop-up window with details (e.g. sample detail)

How: Manipulate Zoom, pan, select, sort

Scale

Approx. 60,000 items (10,000 malware samples and 50,000+

benign samples)

When the user selects a set of training applications, our system

will train and test the model on a set of predefined malware and

benign testing applications. Based on the results, the researcher

can investigate the reasons behind the model’s performance and

reliability by:

• Identifying the misclassified malware applications.

• Identifying the effort required for malware applications to

evade detection.

• Identifying similar training applications to the misclassified

testing applications, to explain prediction results using their

similarities.

3.2 Data
We plan to collect malware applications based on snapshots pro-

vided by VirusTotal Academic [17]. Six snapshots were provided

between the years 2016 to 2019, consisting of 10K applications.

We plan to collect our benign applications from AndroZoo [2], a

large repository which continuously scrapes applications from a

variety of markets between a similar time range. All applications

will be converted into feature vectors using Drebin [3], a pop-

ular Android machine learning malware detection tool. Drebin

uses lightweight static analysis to extract eight types of features

based on an application’s bytecode and manifest file. The eight

categories include: (1) requested permissions, (2) used permissions,

(3) application components, (4) hardware components, (5) intent

filters), (6) permissions guarded API calls, (7) suspicious API calls,

and (8) network addresses. All feature values are binary and are

represented as either 0 (i.e., feature absent from the application)

or 1 (i.e., feature present in the application). From our previous

experiences of using Drebin, a training data set of 10K applications

leads to 108K features. We plan to apply feature selection to reduce

the number of features.

4 SOLUTION
In this section, we describe our plans to implement the visualization

system that can assist researchers perform the previously defined

tasks.

Task: Visualize the training data set distribution.

In order to create an overview of the applications in 2D, we plan

to perform popular dimension reduction techniques (e.g. t-SNE,

MDS) on the application features provided by the researcher. To
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Figure 1: Data Set Visualization Page

visualize the result from dimension reduction, we considered us-

ing a simple scatter plot (shown in Figure 1, “Dataset Overview”).

However, we noted that scatter plots have issues with scalability—

overlapped applications could obscure the density information. We

also considered an alternative visualization where we group the

reduced feature space into square blocks, and use pie charts to dis-

play the benign and malware distribution over each block. The size

of the each circle encodes the number of applications within each

block. This approach preserves the density information, however

breaking the continuous space into discrete blocks can potentially

distort continuous clusters. For now, we plan to implement the scat-

ter plot. However, if we run into density issues we plan to explore

the alternative approach.

Task: View summary statistics of the feature usage over a set of

applications.

Visualizing the feature distribution over a set of applications is

useful for exploring the characteristics of a data set. As Drebin

features only contain binary values, we can aggregate the feature

usage information over a particular set of features, and visualize

them using a single bar chart; the x-axis corresponds to features, and

y-axis corresponds to the feature usage among benign and malware

applications (shown in Figure 1, “Feature Usage Distribution”). To

better uncover the feature usage trend, we also offer the flexibility

for users to choose how to sort the features on the x-axis. Other than

the trend in overall feature usage, there could also be interesting

patterns in how different categories of features are used among

benign and malware applications. Hence, we will also designate

a view on the average usage of different feature categories over

benign and malware applications (shown in Figure 1, “Average

Feature Usage Per Category”). We plan to use either a bar chart

or line trend chart with error bars, to show the average feature

usage distribution for each category among benign and malware

applications separately.

Task: Perform analysis on different data sets.

To see how characteristics vary over different data sets, we offer

the user options to filter applications by time (e.g. select the tem-

poral range) or to select the applications directly by drawing over

the application distribution view (shown in Figure 1, “Application

Selection”). Once the user filters or draws a selection of applications,

the feature distribution views will be updated accordingly.

Task: Perform analysis using different features.

If the researcher wants to ignore some features, they can use

the feature selection panel to restrict the features to categories of

interest (shown in Figure 1, “Feature Selection"). Once the feature

category selection is updated, the visualization views will also be

updated to reflect the changes in similarity among applications.

Task: Evaluate model performance.

After the user analyzes and selects a desired training data set (the

selected applications will be highlighted in the “Data set Overview”

in Figure 1), the system will train an support vector machine (SVM)

model and evaluate the model performance on a pre-defined testing
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Figure 2: Model Performance Visualization Page

data set. The performance result shown to the user will include: (1)

a confusion matrix (i.e. True Positive, True Negative, False Positive,

and False Negative), (2) accuracy, precision, recall, and f1-measure

on malware detection (shown in Figure 2, “Classification Results”),

(3) the malware detection rate degradation under the injection of

benign features (shown in Figure 2, “Classification Results”).

Task: Understand model performance.

As the first step to help the user interpret the prediction results

from the model, we will visualize the application distributions over

both training and testing data. Similar to the procedure used to

visualize training data distributions, the same dimension reduction

technique will be applied to generate the application distribution

in 2D using both training and testing applications. To differentiate

training and testing data, we will use different colors to encode

training benign, training malware, testing benign, and testing mal-

ware (shown in 2, “Training & Testing Data Overview”). Based on

the performance results of the model, we can identify and highlight

misclassified applications on the data overview. Another interesting

piece of information to include in the view is the evasiveness of

different malware applications (e.g. the number of features needed

to evade detections). We plan to categorize the malware applica-

tions into buckets based on the number of features injected to evade

detection, and use color gradients to encode the buckets (i.e., darker

red represents the applications which require more injected features

to evade detection, and lighter red requires less features to evade

detection). This is shown in Figure 2 under “Training & Testing

Data Overview”. By including such information on the application

distribution view, we hope to use the samples’ surrounding train-

ing applications to explain the model’s predictions. To understand

model robustness, we will visualize the model weight distribution

(shown in Figure 2, “Model Weights Distribution”). It is suggested

by Demontis et al. [7] that a model is more robust against attacks

if its feature weights are more evenly distributed. Intuitively, this

is because there are less highly distinguishing benign features. We

plan to sort the model’s feature weights from largest to smallest,

and visualize the trend using a scatter plot to see if all the feature

weight values are bounded. If the feature weights show a slow de-

creasing trend over the set of features, this would indicate a more

robust model.

The design decisions we described above are also summarized

in Table 1 by following the What-Why-How analysis approach

introduced in Visualization Design and Analysis.

5 IMPLEMENTATION
We plan to develop the visualization system as a web application

using the React framework and d3 visualization library.

6 MILESTONES
We partition our milestones based on the three screens required to

aid researchers in selecting applications, including: (1) Data Collec-

tion & Extraction, (2) Application Selection, and (3) ResultingModel.

In addition to the three milestones, we include a fourth to describe

tasks related to constructing the project paper and presentation.
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Figure 3: Work Breakdown

Figure 3 shows a gantt chart describing time estimations of tasks

required to implement the four milestones. Work done by Michael

and Gabby are associated with blue and orange bars, respectively.

We plan to implement our milestones in two week software sprints,

where the result of every sprint produces a working visualization

program.

In the first sprint (October W4/W5 and November W1) we plan

to collect all necessary data and build a minimalistic app that dis-

plays the application feature data on the screen. The first week

(October W4/W5) will be used to collect data used for the study.

We estimate 3 days for Michael to download all benign and mali-

cious applications, as we plan to collect 60,000 applications overall

and noticed our servers were previously capable of downloading

20,000 applications per day from available online sources. After the

downloading of applications is complete, Gabby will write scripts

to collect features and related metadata information necessary for

visualization purposes. We estimate the collection of this informa-

tion to take four days, as substantial computational power is needed

to extract this information from the samples. In parallel, we plan

to start setting up the baseline web components used to retrieve

and visualize the application feature data. We further estimate that

setting up the web components will take a week, and integrating

with d3 to take another week. The first sprint will result in a web ap-

plication that can take application feature data as input and display

the data on the web application.

In the second sprint (November W2/W3) we plan to develop

components used to visualize the model, produced from selecting a

set of samples. These components include a visualization of training

and testing data, a confusion matrix, a model weight distribution,

and a measurement of the robustness to the benign feature injection

attack.We estimate that it will take twoweeks to implement the new

components and integrate it with the existing product from sprint

one. Note that we have not implemented the interactions necessary

to select applications, and plan to mock application selection until

the next sprint. In parallel, we plan to update the project paper

with details related to visualizing the set of malware applications,

benign applications, and the resulting model. The second sprint

will result in a web application which displays visualizations of the

feature data and model results.

In the third sprint (November W4/W5) we plan to implement

user interactions with the system. This includes panning, zooming,

time and category feature filtering, sample selection, highlighting

misclassifications, and selecting cluster techniques for visualization

purposes. We estimate a total of five days to implement all user

interactions. The third sprint results in a fully functional visualiza-

tion system, which allows users to input application feature data,

filter and select data for the study, and view the resulting model

in terms of weights, performance, and reliability. We additionally

add four days of padding to account for risks in implementation.

Finally, the last two weeks are used to prepare for the final paper

and presentation.

7 DISCUSSION
Fine to leave empty in proposal.

8 FUTUREWORK
Fine to leave empty in proposal.

9 CONCLUSIONS
Fine to leave empty in proposal.
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