
A Data and Model Visualization System 
for Android Malware Detection

CPSC 547
Michael Cao 
Gabby Xiong 

1



Android Malware Detection

● Cybercriminals target mobile due to large user base
● Rely on machine learning 
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● Focus on producing models with high accuracy
○ What about model attackability?

Issue with Android Malware Detection 
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● Focus on producing models with high accuracy
○ What about model attackability?

● Mimicry Attack: 
○ Inject features they think represent benign to mislead detection

Issue with Android Malware Detection 
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● Different sets of benign samples, different impacts on results
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Higher Detection Rate
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Lower Detection Rate

Lower Attackability

Issue with Android Malware Detection 

● Different sets of benign samples, different impacts on results

Train

Train

How do the benign samples used influence the model?

Exploration requires a lot of trial and errors, and doing so 
manually would be laborsome! 
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● Different sets of benign samples, different impacts on results

Accuracy: 94% 
Detection rate drops to 
50% when 6 features 
injected 

Accuracy: 84% 
Detection rate drops to 
50% when 18 features 
injected 

Train

Train

Our solution: visualization system to facilitate exploration!

Issue with Android Malware Detection 
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DREBIN: Case Study

● Well-known Android malware detection technique [1]
● Eight categories of features
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DREBIN: Case Study

● Binary values indicate presence / absence of feature
● Concatenate features from all samples to form feature space 
● SVM classifier

Hardware

Requested 
Permission
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Data Android Sample Data: 

● 5,000 malware from VirusTotal 
● 10,000 benign from Google Play 
● From year 2011 to 2019 

Types of Data: 

● Android Samples
○ Temporal
○ Drebin Features

● Model
○ Performance 
○ Attackability

10,000             5,000
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Tasks (Training)

● Exploring training data distribution
○ Compare benign and malware distributions

■ View similarity between samples  
○ What contribute to the similarity / dissimilarity  

■ Individual feature
■ Feature category

○ Observe similarity/dissimilarity by including/discluding features

● Select particular set of samples and features to train model
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Tasks (Testing)
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● Exploring the model
○ Investigate model performance and attackability

■ Accuracy, # features to flip detection
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● Exploring the model
○ Investigate model performance and attackability

■ Accuracy, # features to flip detection

○ Understand important features learned by model

■ Weights of features assigned by the model

○ Compare training and testing sample distributions

■ Locate misclassified samples

○ Interpret why certain samples being misclassified 

Tasks (Testing)
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Demo
Working scenario of the tool
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Limitations
● Limited to analyze “Drebin” Android Malware Detection Tool
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Limitations
● Limited to analyze “Drebin” Android Malware Detection Tool

● Limited functionality
○ No way to tune dimensional reduction results

● Dealing with large feature space
○ Scalability
○ More flexible approaches to select features
○ User has no idea on features for particular samples 
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Limitations
● No mechanism for cross experiment comparisons

○ Add juxtaposed view for comparisons
○ Less control over the testing samples 

● Few “What-If” functionalities included in the system
○ Allow user to modify / oversample training samples
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Lesson Learned
● Prototype, Prototype, Prototype!
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Focus

Context



Thank you! Q&A
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Intro & Framing 
● Research Topic (a tool to facilitate exploring the relationship between training 

data and resulting model)?
○ How to select the set of benign samples that results in the best performance?
○ OR
○ Current process of performing such exploratory tasks are time consuming?
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