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Android Malware Detection

e Cybercriminals target mobile due to large user base
e Rely on machine learning
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e Focus on producing models with high accuracy
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Issue with Android Malware Detection

e Focus on producing models with high accuracy
o What about model attackability?
e Mimicry Attack:
o Inject features they think represent benign to mislead detection
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Issue with Android Malware Detection

e Different sets of benign samples, different impacts on results
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Issue with Android Malware Detection

Classifier

e Different sets of benign samples, different impacts on results
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How do the benign samples used influence the model? |

Exploration requires a lot of trial and errors, and doing so
manually would be laborsome!
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Issue with Android Malware Detection

e Different sets of benign samples, different impacts on results
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Our solution: visualization system to facilitate exploration!
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High Level Overview
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e Binary values indicate presence / absence of feature
e Concatenate features from all samples to form feature space
e SVM classifier
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Data Android Sample Data:

e 5,000 malware from VirusTotal
e 10,000 benign from Google Play
e From year 2011 to 2019

Benign Malware

Types of Data:
" Google Play Z VirusTotal

10,000 5,000

e Android Samples
o Temporal
o Drebin Features
e Model
o Performance
o Attackability
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Tasks (Training)

e Exploring training data distribution
o Compare benign and malware distributions
m View similarity between samples
o What contribute to the similarity / dissimilarity

m Individual feature
m Feature category

o Observe similarity/dissimilarity by including/discluding features

e Select particular set of samples and features to train model
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Tasks (Testing)

e Exploring the model
o Investigate model performance and attackability

m Accuracy, # features to flip detection

o Understand important features learned by model
m \Weights of features assigned by the model

o Compare training and testing sample distributions
m Locate misclassified samples

o Interpret why certain samples being misclassified




Demo

Working scenario of the tool
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Limitations

e Limited to analyze “Drebin” Android Malware Detection Tool

e Limited functionality
o No way to tune dimensional reduction results

e Dealing with large feature space
o Scalability
o More flexible approaches to select features

o User has no idea on features for particular samples
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Limitations

e No mechanism for cross experiment comparisons
o Add juxtaposed view for comparisons
o Less control over the testing samples

e Few “What-If’ functionalities included in the system
o Allow user to modify / oversample training samples
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Lesson Learned

e Prototype, Prototype, Prototype!
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Lesson Learned

e Prototype, Prototype, Prototype!

Focus
Feature Usage Distribution 5507
2,000 500+
1,800 450+
1.600 400
1,400 250
1,200 2001
1,000 250
800 200
800 i 150
400 100
200 ‘ £
: [ . . M .
Number of Features Sort By O Color By Feature i s U 0 , "
-9 100 Total Popularity Category? . MMM

\ Context 10




Thank you! Q&A
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Intro & Framing

e Research Topic (a tool to facilitate exploring the relationship between training

data and resulting model)?

o How to select the set of benign samples that results in the best performance?
o OR
o  Current process of performing such exploratory tasks are time consuming?
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