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Fig. 1: Overview of visualization system to explore the effects of training on different subsets of Android applications. Left: Data
Set Visualization; Right: Model Performance Visualization.

Abstract— Many approaches for Android malware detection have been proposed to combat against the rise in mobile malware–most
of which have relied on machine learning [3,10,17]. Such approaches extract features from benign and malware applications, and train
a classifier to distinguish between the two classes. One important fact is that the selection of training data can heavily influence the
machine learning model in various aspects. This paper describes a visualization tool, aimed towards Android malware researchers, to
explore the trade-offs of selecting different training application sets on the resulting model. The tool allows the researcher to input a pool
of benign and malware applications, view temporal and feature statistics, and select subsets used for training through an interactive
user interface. Once the researcher is satisfied with the selection of applications, a model is trained and the researcher is provided with
information for comprehending the performance and attackability of the model.

Index Terms—Android, Machine Learning, Malware Detection, Model Performance, Model Attackability

1 INTRODUCTION

Mobile smart phones have become increasingly popular in the past
decade. As a matter of fact, the number of smart phone users are
expected to nearly double from 2016 to 2021 [22]. While smart phones
bring many benefits to a user’s life, their adoption has also greatly
stimulated the growth of mobile malware. In particular, the Android
market is a vulnerable target for malicious users due to its open sourced
nature and large user market.

A number of approaches have recently emerged to support Android
malware detection [1, 3, 10, 17]. Most of the proposed approaches
rely on extracting application features and training a machine learning
classifier to distinguish between the benign and malicious applications.
Benign applications are easily collected and can be considered as an
unlimited source. On the other hand, malware applications are often
limited and difficult to find in practice. When training a classifier,
practitioners often collect as many malware applications as possible
and randomly sample from the unlimited benign pool. Training on such
data is likely to create a highly separable classifier model.

A highly separable model clearly distinguishes between the benign
and malware classes—often providing high performance results when
detecting applications from the same distribution as training. The model
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will often learn highly distinguishing features that are associated with
the benign or malware class. While a highly separable model provides
good detection performance, it trades off reliability. Malware can easily
exhibit the highly distinguishing benign features by adopting similar
functionalities from the benign applications to disrupt the model’s
detection rate. In fact, recent studies have shown that simply injecting a
small amount of benign features into malware can substantially reduce
the malware detection rate of a highly separable model from 94% to
67% [5].

We hypothesize that a classifier trained using benign applications
similar to the malware will reduce the number of highly distinguishing
benign features, and hence produce a less separable model. While
less separable models are more resilient to the benign feature injection
attack, we suspect the models’ overall ability to distinguish between
the benign and malware classes to decrease. Varying the similarity
between benign and malware training applications could possibly tune
the trade-off between performance and reliability of the model. We built
a visualization tool to effectively explore and confirm this hypothesis.
In particular, we visualized the similarities of training applications and
characteristics of different training data sets to study the relationship
between data selection, the reliability of a model, and the detection
performance of a model.



2 BACKGROUND

In this section, we provide background related to Android application
development. We then discuss a well-known Android malware detec-
tion tool, DREBIN [3], and introduce the notion of attackability for an
Android malware detection model.

2.1 Android Application Development
Android is currently the most used mobile operating system. The output
file used to represent an application is a zipped archive known as an
android package (APK) file. Two key components of the APK file are
the Android manifest and Java bytecode. In addition, the APK file
contains various resources in the form of extensible markup language
(XML) code, which represent the application layouts and predefined
resource strings. Lastly, the application may contain additional native
C++ binaries or assets that are dynamically loaded and used by the
application.

2.2 Android Malware Detection: Drebin
DREBIN [3] is one of the first approaches for Android malware detec-
tion. It uses lightweight static analysis to extract eight different features
falling under the Android manifest and Java bytecode. Features from
the Android manifest include requested permissions (ex., accessing
internet), intent filters (ex., events triggering on device boot), hardware
components (ex., defining camera use), and application components
(ex., activites and services). Features from the Java bytecode include
application program interfaces (API) with associated permissions from
the Android manifest (ex., getCurrentLocation with location permission
requested); APIs that require permissions but are not requested within
the Android manifest (ex., getActiveNetworkInfo without requested
network permissions); suspicious APIs associated with sensitive data
(ex., sendTextMessage); and network addresses. DREBIN denotes an
application’s features as a binary vector of zero and ones, where zero
indicates not containing the feature and one indicates containing the
feature. All eight categories of features are embedded into a joint vector
space, and DREBIN trains a linear Support Vector Machine (SVM) [6]
to distinguish between the benign and malware class.

2.3 Evaluating Attackability of Malware Detection Model
Cyber criminals which produce malware can perform actions to in-
crease their chances of avoiding detection from machine learning mal-
ware detection models. One effective and lightweight approach to avoid
detection is a mimicry attack [4,5]. The typical workflow for a mimicry
attack first starts with the cyber criminal collecting a surrogate set of
benign applications. After this reference set of benign applications is
studied, the cyber criminal denotes common benign functionalities and
injects them into the malware. An approximation to the mimicry attack
is to extract DREBIN features from the surrogate set of benign applica-
tions, and then to inject the features into malicious samples based on
their frequency. The effect of a mimicry attack can be measured based
on the drop in malware detection rate after a given number of features
are injected into the original classified malware applications.

3 DATA AND TASK ABSTRACTION

In this section, we describe our task abstractions in the context of
terminologies introduced in Visualization Design and Analysis.

3.1 Data
We collected malware applications based on snapshots provided by
VirusTotal Academic [23]. Six snapshots were provided between the
years 2016 to 2019, consisting of 5K applications. We also collected
10K benign applications from AndroZoo [2], a large repository that
continuously scrapes applications from a variety of markets between
a similar time range. All applications will be converted into feature
vectors using DREBIN [3]. From our previous experiences of using
DREBIN, the feature space grows super-linearly as we linearly introduce
applications into the data set; a training data set of 5K applications
leads to 22K features, while a training data set of 10K applications
leads to 108K features.

Table 1: What-Why-How-Analysis-Table

What: Data Tabular, binary-valued attributes and sparse

What: Derived

• Dimension reduced application distribution.
• Aggregated feature usage values.
• Model performance results.
• Testing application prediction & attack results.
• Feature weight in trained model.

Why: Tasks

• Explore training data set.
• Select and visually inspect characteristics of
subsets of data.
• Train model on selected data.
• Evaluate the detection rate and attackability
trained model.
• Interpret model results.

How: Encode Scatter plots, Bar charts, Line charts, Table
How: Facet Multiform, overview-detail

How: Reduce Filtering on the applications, filtering on the fea-
tures

How: Embed Pop-up window with details (e.g. application
detail)

How: Manipulate Zoom, pan, select, sort

Scale Approx. 15,000 items (5,000 malware applica-
tions and 10,000 benign applications)

3.2 Tasks
At a high level, we would like to provide a tool that helps researchers
analyze the relationship between the characteristics of the training
data and the properties of the resulting model. The tool can assist the
researcher in achieving the following tasks:

• Visualize the overall training data distribution in 2D and visually
inspect possible clusters

• Evaluate similarities among all applications in the training data,
based on selected feature categories of interest, and locate similar
or distinguishable applications. This could help the researcher
fine tune the similarities among benign and malware applications
in the training dataset

• Visualize feature distributions over a selected set of benign and
malware applications. This could assist the researcher in identify-
ing key features that contribute to similarities or dissimilarities

• Construct a training data set from the total application pool to
train the model for further analysis

After the researcher selects a set of training applications, our system
will train a SVM model and test it on a set of malware and benign
testing applications. Based on the results, the researcher can investigate
the reasons behind the model’s performance and attackability by:

• Visualizing the overall training and testing data distribution in 2D
to compare the distribution of training and testing applications

• Identifying the misclassified applications, and locating similar
training applications to reason about model prediction results

• Identifying the effort (i.e., number of benign features injected)
required for malicious applications to evade detection

• Analyzing the weight assigned by the trained model for each
feature to explain the prediction on applications

4 SOLUTION

In this section, we describe our proposed visualization system which
can assist researchers in performing the previously defined tasks.

Task 1: Visualize the training data set distribution in 2D.

In order to create an overview of the applications in 2D, we per-
formed popular dimension reduction techniques, namely t-SNE [16]



Fig. 2: Data Set Visualization Page

Fig. 3: Alternative application distribution view

and UMAP [18], on the application feature vectors. The implemented
system uses UMAP by default, as it provide faster computation on large
dimensions compared to t-SNE. However, the researcher can change
the dimension reduction technique to t-SNE by using the drop down
menu at the bottom of section “A.(1) Dataset Overview” in Figure
2. To visualize the results from dimension reduction, we considered
using a scatter plot. However, we noticed that scatter plots have issues
with scalability — overlapped applications could obscure the density
information. To reduce overlap, we applied jittering by adding a small
fraction of noise to each application’s location, such that they are less
likely to be on the same spot. However, it is important to note that
overly applying jittering could disturb initial patterns in the data.

We also considered an alternative visualization where we divide the
2D space into square blocks, and use pie charts to display the benign
and malware distribution over each block. This alternative mock up is
shown in Figure 3. The size of each circle encodes the total number
of applications within each block, and the angles inside the circle
encode the proportion of benign and malware. This approach preserves
the density information; however, breaking the continuous space into
discrete blocks can potentially distort continuous clusters.

From our initial testing with 7,500 applications, we found jittering
reduces overlap and produces little disturbance on the application dis-
tribution. Thus we decided to use a scatter plot with jittering within our
final system.

Task 2: Identify similar and dissimilar applications.

Dimension reduction techniques project applications from a high
dimensional feature space to 2D while preserving the relative distances
among applications. Since the distances within a 2D scatter plot reflects
the similarity among applications, the researcher can identify similar
applications by locating clusters within the 2D plot.

Task 3: View trend and characteristics over a set of applications.

Normally, the characteristics for a set of applications can be ab-
stracted through their temporal distribution and feature usage distribu-
tion.

To view the temporal distribution over applications, we used a
grouped bar chart. The x-axis was used to indicate the year an applica-
tion was published, and the y-axis to indicate the number of applications
within a given year. In each year, there are two bars that encode the
total number of benign and malware applications, respectively (shown
in Figure 2, “A.(2) Data Temporal View’).

For visualizing the feature distribution over a set of applications,
we provided two charts at different levels of granularity. As DREBIN
features only contain binary values, we can aggregate the feature usage
information over a particular set of features, and visualize them using a
stacked bar chart (shown in Figure 2, “B.(1) Feature Usage Distribu-
tion”); the x-axis corresponds to features, and the y-axis corresponds to
the feature usage among benign and malware applications.

Due to the limit of space, we pre-set the view to show 100 features,
but the researcher can increase the number of features in the chart by
adjusting the slider. Rather than display a large number of features, we
chose to display a set number of important features based on sorting
heuristics often used in feature selection algorithms. Currently, we
allow the researcher to view up to 500 features based on two sorting
mechanisms, including: (1) sorting by the total popularity of features,
and (2) sorting by the popularity difference between benign and mal-
ware applications. The sorting options are configurable based on a
drop down box. Tool tips were implemented so that a researcher can
hover over features in the bar chart to view more information, including
the corresponding feature name and the number of benign or malware
applications that contain the feature.

In addition to trends from overall feature usage, there could also
be interesting patterns in how different categories of features are used
among benign and malware applications (ex., malware may contain
more features from the requested permissions than benign). Hence,
we also designated a view on the average usage of different feature



Fig. 4: Model Performance Visualization Page

categories over benign and malware applications. We used box plots
to show the feature usage distribution for each category among benign
and malware applications, as box plots can encode more distributional
information over a set of applications rather than average values (shown
in Figure 2, “B.(2) Average Feature Usage Per Category”). In the chart,
the x-axis corresponds to the feature category usage in either benign or
malware applications, and the y-axis encodes the number of features
from a category present in applications. There are 16 boxes shown in the
image, where the 8 left-most boxes correspond to benign applications,
and 8 right-most boxes correspond to malware applications. The feature
categories are encoded using colors selected from ColorBrewer [13].
To facilitate comparisons between benign and malware, we applied the
same color for both benign and malware feature categories.

Task 4: Perform analysis on subset of data.

To see how characteristics vary over different data sets, we offer
the researcher options to filter applications by time, or to select the
applications directly by brushing over the application distribution view
(shown in Figure 2, “C.Selection Panel”). By default, all applications
uploaded from the researcher will be selected in the beginning, and
the researcher can use the “Clear Selection” button to de-select all
applications. Once the researcher is satified with their collection of
applications, they can select the “Update View” button to refresh detail
views, including: the Dataset Overview, Data Temporal View, Feature
Usage Distribution View, and Average Feature Usage Per Category
View. When the researcher wants to investigate another collection
of applications, they can select the “Reset View” button to show and
re-select all applications by default.

Task 5: Perform analysis using different features.

If the researcher wants to ignore features from certain categories,
they can use the feature selection panel to restrict the features to only
categories of interest (shown in Figure 2, “C. Selection Panel”). Once
the feature category selection is updated, the researcher can once again
refresh the detail views using the “Update View” button.

Task 6: Evaluate model performance.

After the researcher selects a desired training data set (the selected
applications will be highlighted in the “Data set Overview” in Figure
2), the system will train and evaluate a Support Vector Machine (SVM)

model on a pre-defined testing data set for both performance and attack-
ability. The results provided regarding the performance of the model
include: (1) a confusion matrix (i.e., True Positive, True Negative,
False Positive, and False Negative), (2) accuracy, precision, recall, and
f1-measure on malware detection (shown in Figure 4, “B. Classification
Results”). The attackability of the model is shown through the malware
detection rate under the mimicry attack, with an increasing number of
features injected into the testing malware applications (shown in Figure
4, “C. Model Attackability Results”).

Task 7: Understand model performance.

To help the researcher interpret the prediction results from the model,
we visualize the application distributions over both training and testing
data. Similar to the procedure used to visualize training data distri-
butions, the same dimension reduction technique will be applied to
generate the application distribution in 2D using both training and test-
ing applications. The results are also shown using a 2D scatter plot.
To differentiate training and testing data, we used different colors to
encode training benign, training malware, testing benign, and testing
malware (shown in 4, “A. Training & Testing Data Overview”).

Based on the detailed performance results of the model on testing
applications, we display the derived information on the applications
used for testing to facilitate an in-depth interpretation of the model
performance. In particular, we:

• Highlight misclassified applications in the training/testing data
overview, controlled through a checkbox.

• Highlight the malware testing applications that can be manipu-
lated to evade model detection with up to X number of features
injected, controlled through a slider. The value from the slider
indicate the upper bound of features which can be injected to each
previously correctly classified malware testing applications.

By displaying the derived information on the application distribution
view, the researchers can use the testing applications’ surrounding
training applications to explain the model’s predictions.

To identify the features that are most exploited to attack within the
resulting model, we created a linked visualization on the detection rate
degradation line chart and the bar chart that includes the most injected
features (shown in Figure 4, “C. Model Attackability Results”). Each



Fig. 5: Implemented Functionalities in Web Application

point on the detection rate degradation line chart denotes the maximum
number of features injected into malware testing applications, and the
corresponding detection rate after injection. When the user selects a
point on the line chart with the maximum injected feature count being
X, the bar chart on the right will display the most popular features
injected when injecting up to X features; the height of a bar indicates
the number of applications being injected with the given feature. The
bars are color coded by the corresponding feature’s category, using the
same color scheme applied in “Average Feature Usage Per Category”
view in order to better reveal trends in exploitable features.

Another approach to reason about the attackability of the model is
the feature weight and usage chart (shown in Figure 4, “D. Feature
Weight and Usage View”). In this chart, a line chart is superimposed on
top of a stacked bar chart. The line chart encodes the absolute feature
weights assigned by the model, while the stacked bar chart indicates the
feature usage among training benign, training malware, testing benign,
and testing malware applications. The bars are also color coded using
the same color scheme as in the “A. Training & Testing Data Overview”.
The features shown in the chart are sorted by the absolute value of the
feature’s weight from the resulting model. In other words, features
that are deemed more important will be displayed in the beginning by
default. The researcher can also increase the number of features shown
in the chart by using the input at the bottom of the section: “Number of
Features to Display: __”. The chart can be used to verify how aligned
the feature usage is with respect to the importance assigned by the
model. Commonly, a reliable model would assign higher importance
to a feature that is shared by a larger amount of training and testing
applications. The line chart of the feature weight alone can also be used
to reason about the model attackability, as suggested by Demontis et
al. [9], that a model is less attackable if the model’s feature weights are
evenly distributed.

To summarize, the design decisions we described above are listed in
Table 1 by following the What-Why-How analysis approach introduced
in Visualization Design and Analysis [19].

5 IMPLEMENTATION

We developed the visualization system as a web application. It is
composed of a back-end and a front-end that communicates through
hyper text transfer protocol (HTTP) responses. We decompose the
implemented functionalities in Figure 5.

The back-end was implemented with Python and Django framework.
The main responsibility of the back-end was to perform tasks that were
computationally demanding, such as computing the dimension reduc-
tion results on selected samples, collecting updated feature distribution
information, training an SVM model with selected samples, and testing
the trained model on pre-defined testing dataset. Dimension reduc-
tion and training an SVM model were performed using off-the-shelf
libraries from Python using the Scikit-Learn library. Other tasks like

feature aggregation or model attackability testing were all implemented
from scratch.

The front-end was implemented with the React framework and with
d3 as the visualization library, serving as the interface to display in-
formation and update based on the researcher’s interactions. Basic
interactions were directly implemented in the front-end, such as chang-
ing the number of features shown in the display, selecting the sorting
heuristics in feature distribution charts, and highlighting samples that
satisfy certain criteria.

We chose React framework for the front-end due to the framework’s
stateful nature. The framework aids in linking interactions between
different views, and the hierarchical component definition in React
allowed for easy in-parallel development among teammates.

In this project, both authors had a chance to implement functionali-
ties in both the back-end and front-end of the system. A detailed work
break down among the two authors is included in the table included in
the appendix.

6 RESULTS

In this section, we walk through a typical scenario the researcher would
perform using the visualization system, and demonstrate how defined
tasks are fulfilled at each step. Unfortunately, we encountered scala-
bility issues in terms of application responsiveness when constantly
computing dimensional reduction beyond 5,000 applications; this was
due to the non-linear relationship between the number of applications
and the given feature space. We thus demonstrate the system sce-
nario using a smaller application size of 3,000 applications, and aim to
achieve the tasks listed in section 3. For the convenience of the reader,
we list the tasks below:

• Task 1. Visualize training data distribution in 2D

• Task 2. Identify similar and dissimilar applications

• Task 3. View trend and characteristics over a set of applications

• Task 4. Perform analysis on subset of data

• Task 5. Perform analysis using different features

• Task 6. Evaluate model performance

• Task 7. Understand model performance

6.1 Scenario: Exploring App Similarity
The researcher is interested in exploring the effects of application
similarity on the resulting model’s performance and attackability. To
test this scenario, the researcher runs two experiment instances in
parallel. In the first instance, the researcher selects and trains a model
based on benign applications that are more similar to the input malware
set. In the second instance, the researcher selects and trains a model
based on benign applications that are less similar to the input malware
set.

The researcher first opens two instances of the visualization system
side by side. Both systems request a comma-separated values (CSV)
file containing the set of benign and malware applications, and the
researcher inputs the same CSV in both instances. Note that the CSV
file contains a larger amount of benign applications, as the researcher
wants to select a subset to perform their experiments. After uploading
the file, the researcher is brought to the data visualization page (see
Figure 2). All applications are selected by default on starting the data
visualization page. For both system instances, the researcher first selects
the “Clear Selection” button from the “Dataset Overview” component
to deselect all applications. The researcher then selects all malware
applications by checking every malware year under the “Application
Selection” view. Note that the “Dataset Overview” component projects
the benign and malware application distributions onto a 2D space (T1).

In the first instance, the researcher aims to select a set of benign
applications that are more similar to the malware. The researcher can
identify the similarity of the applications based on the distance found
in the “Dataset Overview” component—applications that are closer in
the scatter plot are more similar to one another (T2). The researcher
then selects benign applications by holding control and brushing on



(a) Dissimilar Benign Selection

(b) Similar Benign Selection

Fig. 6: Selecting Benign Applications For Two Different Instances.

the “Dataset Overview”. An equal amount of benign applications are
selected which are closest to the malware (T4). The resulting selection
for similar applications can be shown in Figure 6b.

In contrast, the researcher aims to select a set of benign applications
that are more dissimilar to the malware for the second instance. The
researcher follows the same approach, by clearing the default selected
applications, re-selecting all malware, and selecting all benign applica-
tions that are farthest away from the malware. The resulting selection
for dissimilar applications can be shown in Figure 6a.

Once the selections are created, the “Update View” button is selected
under the “Dataset Overview” component for both visualization system
instances. Visualizations related to the temporal distributions of the
selected applications, features, and feature category usage are updated.
The researcher briefly reviews the application statistics (T3) and clicks
the “Train SVM classifier with this data set” button. Two models are
trained as a result, one for each visualization system instance, and the
user is brought to a model performance visualization page (see Figure
4).

On the model performance visualization page, the researcher is pre-
sented with information related to the model performance, attackability,
and features. The researcher first examines the model performance re-
sults by reviewing information found under the “Classification Results”
section of each visualization system instance (T6). We provide a com-
parison of the classification result components for the two experiments
under Figure 7a and Figure 7b. Upon investigating the performance,
the researcher would first review the confusion matrix. Comparing
the experiment using dissimilar to similar benign applications, the
researcher would identify a decrease in true positives (0.99 to 0.89), de-
crease in false positives (0.07 to 0.01), increase in false negatives (0.01
to 0.11), and increase in true negatives (0.93 to 0.99). Furthermore,
the researcher would compare the performance metrics, and notice a
decrease in accuracy (0.96 to 0.94), decrease in recall (0.99 to 0.89),
increase in precision (0.93 to 0.99), and decrease in f-measure (0.96
to 0.94). From these results, the researcher might conclude that the
dissimilar model is able to detect the testing malware better than the
model using similar benign applications. It is interesting to also note
that the model produced with similar benign applications trades off

high malware detection rate for higher accuracy in recognizing benign
applications.

After evaluating the performance results of the two models, the
researcher is interested in investigating the attackability results. The
researcher would first review information found under the “Model
Attackability Results” view for each visualization system instance, and
results of the two instances are then compared. It is interesting to note
that the attackability of the models are substantially different from one
another. On the one hand, the dissimilar model’s malware detection rate
drops from 100 to 0 percent after injecting 50 features. On the other
hand, the similar model’s malware detection rate can still detect 50%
and 32% of malware after injecting 50 and 100 features, respectively.
The researcher concludes that training on similar benign applications
substantially reduces the attackability of the model. On the right hand
side of the “Model Attackability Results” view, the researcher looks
into features that were injected into the testing malware applications for
evaluating the model attackability. The researcher first looks briefly at
the overall color scheme of the bar chart, and notes that the categories
for features injected are very similar. Afterwards, the researcher hovers
over the bars to identify the exact feature injected. The researcher can
then understand that the features injected into most applications were
related to Android media player APIs.

After evaluating the model’s performance and attackability, the re-
searcher aims to understand the reasons behind model performance.
The researcher first looks at the “Model Weight Results” view to ob-
serve how the most impactful features used for detection are distributed
against training or testing benign and malware applications (T7). Within
the stacked bar chart, the researcher identifies the amount of testing
benign applications based on a dark blue encoding, and the amount of
testing malware based on a yellow encoding. From the model trained
with dissimilar benign applications, the researcher notes that many of
the heavily weighted features are used in many testing malware, but
little testing benign. In contrast, the most heavily weighted features
in the model trained with similar benign are more evenly used than
the dissimilar model. The researcher may conclude that the dissimilar
model can detect malware better because the impactful features used
for detection are able to better distinguish between the classes.

Lastly, the researcher may review the “Training & Testing Data
Distribution” view to further understand reasons behind model perfor-
mance (T7). The researcher highlights misclassified applications by
clicking the “Highlight Misclassified Samples” checkbox, and com-
pares misclassified applications in the scatter plot to training or testing
benign and malware applications. Figure 8a and Figure 8b display the
training and testing data distributions for the dissimilar and similar
models, respectively. The researcher first notes that misclassifications
are mainly benign applications in the dissimilar model, and malware
applications in the similar model. Additionally, the researcher also ob-
serves that the training benign applications, while both models are close
to a large cluster of malware applications, is more compact within the
similar model comparatively to the dissimilar model. The researcher
may conclude that the dissimilar model produces a decision boundary
that is closer to the benign applications, leading to a higher misclassifi-
cation rate of benign testing applications. Likewise, the researcher may
conclude that the similar model produces a decision boundary that is
closer to the malware applications, leading to a higher misclassification
rate of malware testing applications. Afterwards, the researcher may re-
peat multiple iterations of the scenario using similar settings to confirm
their findings.

7 DISCUSSION AND FUTURE WORK

Due to the time limit of the course, we were not able to perform a
systematic evaluation with Android malware detection researchers.
However, we briefly discussed with Android malware researchers from
our lab group. When bringing up the idea of this system to Android
malware researchers, they imagined this tool to be helpful in terms of
organizing and debugging Android malware detection experiments. The
system functionalities include the overall workflow of investigating and
selecting training applications, training a model with a selected subset,
and collecting performance information on the trained model, while
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Fig. 7: Model Results Based on Performance, Attackability, and Features.

offering the researcher the flexibility to interact within the process.
In addition, the system provides visualizations on both the sample
distribution and feature distribution of an Android malware detection
data set, which collectively helps to extract semantically meaningful
characteristics from the data set.

7.1 Limitations
There are a few limitations in the implemented system that we believe
could be improved.

The first limitation is the scalability of the system. It is impor-
tant to note that the responsiveness of user interactions is one of the
key strengths that this system can bring to the investigation process.
However, this fact is limited in the current implementation; the com-
putational time required to perform dimension reduction bottlenecks
the responsive interactions based on a custom set of selected applica-
tions. Due to the high dimensional application feature space, even with
UMAP, the computation is too time consuming for real time interac-
tions. The current back-end also does not support CUDA, which could
substantially reduce the computation time of T-SNE or UMAP. In the
current system, with 3,000 samples in the view, it takes roughly 30 sec-
onds to 1 minute to update the dimension reduced sample distribution
results. One possible way to improve on this is to host the back-end
on servers with more computing power. Another improvement could
involve performing feature reduction to remove noisy features, while
retaining features with the most variance in the original data set before
performing dimension reduction.

A second limitation includes the limited functionalities we provide
to explore the feature space of the data set. The current system only
provides a visualization on the top features. For instance, the “Feature
Distribution View” in Figure 2 only displays up to the top 500 features.
To provide a well-rounded view on the features used in the data set, one
alternative approach is to use a visualization with context and focus
idioms as shown in Figure 9. In this alternative approach, the lower
view provides an overview on the whole feature space, and the upper
view shows more detailed information on a currently selected set of
features. The researcher can use brush to select a window from the
lower view, and the features within the window will be displayed in the
upper view. With this approach, the researcher can have a better idea of
the feature space and additional flexibility to investigate the features.

The third limitation is that the current system lacks a mechanism for
researchers to perform cross-experiment comparisons. One possible
future direction would be to create a storage system that can save the

configuration and the corresponding results from different experiments.
Additionally, a new page could be created to allow the researcher to
load and compare the experimental results from multiple experiments
using a juxtaposed views.

Furthermore, as this project is limited to the scope of analyzing
DREBIN Android malware detection tool, the implemented feature
aggregation approaches are only applicable to Drebin-like features
(e.g. string-based and integer count based features). New visual en-
coding and interaction mechanisms are required if researchers want
to investigate other feature patterns, such as API call sequences, as
features.

7.2 Lesson Learned

In this project, we applied our knowledge from visualization design
and analysis to build a functional system, aimed to improve an Android
malware researcher’s experience in exploring trade-offs of selecting
different training data on the resulting model. Through this project, one
key lesson we learned is to discuss with more people during the design
process. It is easy to form tunnel vision when focusing on the project.
Constantly seeking feedback from Android malware researchers or
peers can help to identify more efficient or unreasonable designs in an
earlier stage.

Another key lesson is to start building prototype early. We realized
that some proposed visual encodings could not effectively display the
information as desired only after we fully implemented the components
and tried them in action. For some of these cases, we were able to
change the implementation immediately, and some have been left as
future work. However, we believe the system could be further refined
if we were able to go through additional prototyping cycles.

7.3 Future Work

Both authors are interested in continuing the development and refining
the current visualization system. We first plan to change the visual
encoding for feature distribution views to improve the flexibility of a
researcher’s interactions with features. We then plan to experiment
with approaches to improve the overall responsiveness of the system,
such as reducing the time needed to perform dimension reduction on
the set of selected applications. Lastly, we plan to include mechanisms
to store and compare results from multiple experiments.



(a) Dissimilar Benign Selection

(b) Similar Benign Selection

Fig. 8: Training and Testing Distributions.

Fig. 9: Alternative feature view with context and focus styled barchart

8 RELATED WORK

8.1 Android Application Visualizations

Existing visualization tools for Android applications focus on Android
malware. These works are divided into two categories: (1) visualiza-
tions that help security analysts locate malicious behaviors [11, 21, 25],
and (2) visualizations of Android malware families [11].

Yan et al. [25] presented a visualization framework to assist malware
analysts in statically locating the malicious code. The proposed tool
first prunes an app’s function call graph into sub graphs that contain
suspicious behaviors, and visualizes the graphs using a force-directed
scheme. A set of interactions are provided for malware analysts to
verify and further dissect the code block related to suspicious behaviors.
Ganesh et al. also presented a visualization toolbox [21] designed to
efficiently display program artifacts in manual malware analysis. They
encoded the hierarchical class structure using containment marks, and
allowed the user to abstract call sequences to a higher level by changing
the visualization scope. To help researchers locate malicious behaviors
while running the app, De Lorenzo et al. [8] presented a ML-based
framework trained to classify blocks of execution traces related to
malicious behaviors. After deployment, it monitors and visualizes the
maliciousness of execution traces through a temporal bar chart.

Clustering Android malware into different families based on their
malicious behaviors can also help malware analysts prevent attacks
from malware variants. Gonzales et al. [11] applied various dimen-
sion reduction techniques to project high dimensional traffic data of
malware applications to 2D, and visualized the results using scatter
plots. By comparing the results from different projection functions,
they identified differentiating traffic patterns among malware families.

To the best of our knowledge, only Rory et al. [7] have presented
a tool to study similarities between benign and malware applications.
They measured the distance among applications in the feature space and
used a circular dendrogram to visualize the hierarchical relationships
among applications. Malware analysts can easily infer the distance
between applications by locating them on the dendrogram, and un-
derstand the classification results from classifiers trained on the same
applications.

8.2 Visualizing Machine Learning Data

Over the years, an abundance of work has been proposed to incorporate
visualization into the machine learning process. Most have focused
on providing visualizations to help users explore correlations between
features, or provide an interaction interface to keep users in the loop
and improve the reliability of the model. Only a few tools [12, 15,
20, 24] have been proposed to help users investigate training data set
characteristics, or to examine relationships between the training data
and resulting model properties [14].

Patel et al. presented a visualization framework [20] to understand
properties of the training data. Their tool helps users identify notewor-
thy examples by exploiting the classification results based on multiple
trained model instances. The Profiler [15] system proposed by Kandel
et al. automatically flags problematic data using data mining tech-
niques. The authors present results of their flagging process by using
coordinated summary visualizations that support interactions and links
to assess detected anomalies. Wongsuphasawat et al. [24] presented
a tool to help analysts in discovery by offering recommendations of
potentially interesting visualizations on particular features. The tool
also generates coordinated views given a user’s partial specifications.
In addition, Google launched the web interface FACETS [12] for users
to visualize their high-dimensional machine learning data. It offers
two visualizations: “Facets Overview” and “Facets Dive”. “Facets
Overview” produces summary statistics over each feature, and com-
pares the distributions over training and testing data. “Facet Dive”
provides an interactive interface for users to sort and examine individ-
ual applications in the data.

Hohman et al. [14] pointed out that understanding the data should
be of equal importance as understanding the model. They describe
that it is crucial to evaluate the quality of training data and monitor the
performance of the model. They presented a visualization interface,



“CHAMELEON”, which integrated multiple coordinated views to help
researchers compare the trained model over different data sets.

9 CONCLUSIONS

In this paper, we presented a visualization system aimed to facilitate
Android malware researchers in exploring the relationship between
training samples and the resulting detection model through interactive
visualization. The system uses multiple views based on aggregated
information to help the researcher explore and discover trends and
outliers in Android malware detection. Using provided interfaces, the
researcher can select a subset of samples with particular characteristics
for in-depth analysis. Additionally, with the process of training and
testing Android malware detection model integrated into the system,
the researcher can easily assess the trade-offs between performance and
attackability of the trained model. Visualizations of the derived data
from the trained model are provided for researchers to comprehend
and verify the model’s learning results. We hope, with the interactive
visualization on training data and model performance results provided
in this system, Android malware researchers can distill the relationship
between applications and the trained model more effectively.
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A APPENDIX

The table below breaks down the implementation tasks performed by
each of the group members.

Fig. A.1: Detailed implementation tasks breakdown
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