
Bewilder: Handling Web Resource Complexity in
Online Learning/Research

Eric Easthope
Department of Computer Science

University of British Columbia
Vancouver, Canada

eric.easthope@me.com

Abstract—TBD
Index Terms—TBD

I. INTRODUCTION

Organizing web links like Uniform Resource Identifiers
(URIs) and Document Object Identifiers (DOIs), which is
often done within browser-based folders, remains a visually
cluttered and awkward user experience. The alternative, to save
and archive tabs offline (also usually within folders), is no
more effective. Given many web items, the amount of manual
categorization a user must do quickly becomes overwhelming.

New browser features like tab grouping get us closer to
being organized, but are in effect just views of additional
folders. Moreover, many in-browser bookmark and resource
managers, or other paid software tools, put heavy emphasis on
users to manually annotate and sort their own content without
much automation.

Task complexity increases further if we try to organize and
connect common web links to other URI/DOI-based resources
such as arXiv papers or government information. A user may
also wish to add notes to URI/DOI metadata to recall later
why they have saved URIs/DOIs in the order they are in, and
how they are connected. Two key visual challenges arise:

• How do we make it visually and cognitively easier to
review collected web links with additional context?

• How do we visualize these collections at scale?
Enter Bewilder. Bewilder gives us a way to overview,

annotate, and arrange collected web items in a way that
retains why and when we are saving them, and how they are
connected to other resources. Bewilder aims to facilitate large-
scale browser-heavy exploration and research by giving users,
primarily sensemakers, “knowledge workers” (e.g. engineers,
scientists, etc.), and students, a way to produce annotations
and traceback for online content.

A. Personal Expertise

How to construct effective representations of connected
URI/DOI data, and how these representations could aid learn-
ing and research, has been an off-and-on personal interest over
the past few years, but without expert knowledge. Previous
efforts focused more on the programmatic acquisition and
handling of online content, but not so much the visualization
of user-collected representations of this content. In preparation

for this work, we have engaged with learners and researchers
directly to learn about some the resource-related problems they
face in their work, and what tools they currently use to archive
and retrieve online content.

We have also prototyped various forms of ontological and
knowledge-driven software tools in the past using D3.js with
the broader intent to support our own work and data-driven
research. Some of these previous developments also centred
on the problem of digital notetaking and how to share learning
resources without just copying them entirely.

II. RELATED WORK

Tools for URI/DOI management, and more broadly tools
for online exploration and web-based archiving, have been
explored in the past. Some of the notable online efforts
are [1] (for how systematic it is), [2] (for how long it has
been maintained), and [3] (for its cross-platform software
compatibility). In academia, [4] is popular too, particularly for
managing large-scale research-driven bibliographies. There is
also [5], [6], as well as [7], which all seem to reflect a desire
for interlinked and metadata-rich web content.

In the academic literature, there is also [8], [9], [10], and
[11]. Closest to our own interests for this paper is the “discus-
sion topology” view in Kialo (that is [8]), which effectively
visualizes the topology of arguments between participants on
a topic (shown below in Fig. 1). Like our own design (to be
described in greater detail later on), a radial vis idiom shows a
hierarchy for added items, and provides hover-activated tooltip
previews for these items. However, the visualization in [8]
differs from ours in that its perceived hierarchy is only partially
“acausal” (i.e. partially ordered in terms of when items are
contributed), and the items shown must be contributed through
alternative text-based subpages of the hosting website for
[8]. Papers [10] and [11] also discuss and develop radial vis
idioms, but do so to satisfy different task requirements for
distinct problem domains.

While Zettelkasten (that is [1]), described as “a personal
tool for thinking and writing,” provides an interesting and
methodical way to hyperlink thoughts and writing, and one
from which some successful software tools have emerged, we
think the method and accompanying software is incomplete.
These software tools, namely [12] in particular, but also
others such as [13] and [14], do not seem to emphasize or



enable the visualization of connected graph-like content and
the overall topology of such graphs. Moreover, modifying this
graph topology through individual items is done indirectly by
navigating through multiple views, which do not often retain
context and therefore add cognitive load. This indirectness dis-
tracts users from the underlying task of forming recognizable
and actionable connections between objects and associated
categories. Note to readers: I wasn’t sure if a more “critical”
paragraph like this is appropriate in a Related Work section.
What do you think?)

Other tools like [2], [3], and [4], while serving their primary
purposes, namely education, archiving, and research automa-
tion respectively, seem to lack much user interactivity and
visualization. Moreover, the underlying topologies of [5] and
[6], which could have much utility if they were applied, are
not readily accessible to the public. We speculate that some
of this inaccessibility is due to a lack of viable free software
tools. Note to readers: Should this last sentence perhaps be a
footnote?)

Fig. 1. Kialo’s “discussion topology” view.

III. DATA & TASK ABSTRACTION

To give users guided control over their own collections of
web links and research articles, especially to modify and ex-
plore the details of these collections, Bewilder must first unify
a number of often disparate forms of hyperlinked online web
content. This web content is frequently saved as .webloc,
.url, and HTML files. Many modern web browsers also
provide a bookmark export feature to produce HTML-based
archives of web content, often storing both the web URIs and
titles of individual webpages.

Data from user discovery, as well as personal bookmark
collections exported from Chrome, Safari, and [15], have
informed our task definitions as well as early prototypes. These
bookmark collections are structured as nested hierarchies of
web links, where HTML headers, sub-headers, and so on,
represent user-customized bookmark folders.

All of these file formats (.webloc, .url, and HTML)
can be unified as nested JavaScript Object Notation (JSON)
data (e.g. Fig. 2). We can also use programmatic access of
[5] to retrieve titles, types (e.g. video.movie), and images

associated to each URI. Many DOIs are also hyperlinked to
specific URIs, and can therefore be represented within the
JSON file format.

Broadly speaking, Bewilder should produce at-scale
overviews for as many as hundreds or more annotated and
interlinked web items. Bewilder should also enable users
to annotate and edit web link metadata, such as the titles,
types and images mentioned, as well as custom user-selected
categories, to create dependencies and connect web items to
each other.

Our task abstractions are defined through “user stories,”
which are derived from discussions and interactions that we
have had with students, researchers, and other learners and
information foragers outside the academic community. Each
user story briefly describes a practical use-case for Bewilder.
First we itemize these user stories, and then introduce tasks
that arise from each user’s needs:

1) “As a student I want to be able to quickly aggregate
and group URIs by their similarities so that I can solve
resource-heavy assignments faster.”

2) “As a researcher I want to be able to re-arrange and
annotate URIs/DOIs so that I can take notes on a per-
link basis during literature search.”

3) “As a journalist I want to be able to make directed
and/or causal links between URIs so that I can trace
through the events leading up to a breaking story.”

4) “As a self-directed learner I want to be able to create
and annotate URIs/DOIs with traceback so that I can
recall later how I found specific information.”

All four users are trying to derive tree or graph-like data
from individual web items. In particular, we treat URIs and
DOIs as nodes, and their connections, defined through custom
categories or through similarities in their metadata (such as
mutually shared types, which are also categorical), as links.
These nodes and links are representable as JSON data. Also,
by keeping track of when nodes are added, we can derive a
directed graph representation.

User (1) takes this directed node-link data, and combines
it with categorical node attributes (either annotated by the
user or retrieved from [5]), to derive a new graph topology
by adding links. These links indicate new dependencies of
attributes within the graph. The user can then reduce this
graph by aggregation based on these dependencies.

User (2), like user (1), uses the annotation of categorical
attributes on the graph’s nodes to produce new node-to-
node dependencies. The user can then encode new graph
arrangements, ordered or otherwise, to identify features and/or
outliers.

Users (3) and (4) perform mutually similar tasks. However,
unlike users (1) and (2), these users produce and arrange a
directed graph topology by adding many nodes, then adding
categorical attributes to produce dependencies (which pro-
duces links), and finally re-ordering these nodes based on the
order in which they are added.

These four user stories, described in this way, inform the
functional design of Bewilder.



Fig. 2. Sample of nested JSON transformed to derived node data (note to
readers: will replace this figure with more detailed and URI/DOI-related JSON
for the final report).

IV. SOLUTION

Bewilder provides users with a radial force-directed graph
idiom that uses a partial ordering scheme (shown in Fig. 3 as
annuli) to create a sense of hierarchy relative to the first node
that is added during a session. Node radii are also varied to
emphasize “central” nodes within the hierarchy (technically
speaking, nodes that are not leaves). This hierarchy is not
strictly enforced, and can be modified by simply dragging
and dropping nodes into another annulus (which updates the
underlying “global” data structure accordingly, in particular
the level attribute). Also, nodes without links are de-
emphasized with lower opacity.

Users can add web links by dragging in and dropping
.webloc, .url, and HTML files from their desktop, which
are parsed automatically to produce a JSON-like data structure.
HTML files, in particular, are parsed as JSON based on the
nesting of web links within bookmark folders. From this
nested JSON data, we can derive node and link data (e.g.
Fig. 2).

If a user clicks and holds onto a node for an extended period
of time (without dragging, which keeps the user in the radial
graph view), they enter the annotation view (Fig. 4, note to
readers: will be added in the final report as it is currently
under revision), which is shown as an semi-opaque overlay
on top of the radial graph view. The annotation view displays
and allows users to modify a specific node’s data attributes,
such as the URI/DOI, its title (which is used by default as a
tooltip-based label), its categories (which can determine link
dependencies), or to add custom notes.

The choice of making the annotation view semi-opaque is
to allow users to retain a sense of visual context, while still
focusing their attention on modifying node-specific attributes.
Again, modifications to a node’s attributes update the un-
derlying global data structure. Also, node attributes that are
dynamically and automatically retrieved from [5] are shown
in this view. Clicking outside this view, or pressing the “×”
in the top-right corner, hides this view and returns the user to
the radial graph view.

Users can hover over any node in the radial graph view to
see a text preview for which nodes are connected to it. These

connections are shown with respect to incoming and outgoing
link directions (i.e. is the hovered-over node connected to or
from another node?). Users can also hover over an annulus
as well to see a text preview for which nodes share the same
level attribute.

A “smart defaults” feature automatically creates links and
groups URIs/DOIs based on attributes retrieved from [5]. To
satisfy user stories (3) and (4), a “chronology” feature forces
node ordering based on timestamps of when their associated
web links are added to Bewilder.

Lastly, users can download their modified data as a JSON
file.

Fig. 3. Radial force-directed graph idiom (note to readers: de-emphasized
node opacity, text previews, and link directionality are not shown here).

Fig. 4. Annotation view (note to readers: will be added in the final report
as it is currently under revision).

A. Implementation

Bewilder is implemented in JavaScript using Webpack,
and will be hosted online at www.bewilder.me. Hosting is
integrated with Vercel to enable continuous deployment from
GitHub by automatically updating the website when new
production versions are released. Source files for Bewilder are
also version-controlled and hosted in a private repository on
GitHub.

All visualizations are also written in JavaScript using D3.js.
D3.js is used for developing the vis idioms, for data manipula-
tion, and for modifying the appearance of some user interface
(UI) elements. Redux is also used (client-side) to manage UI-
related state.



We also use TypeScript to add simple checks for matching
data types, and to catch and prevent unexpected data handling
errors during web link importing and in-app management of
imported URIs/DOIs.

Some code-driven features, like Bewilder’s ability to get a
dragged-in web item’s URI/DOI data, borrows from and adapts
previously-written code for this purpose. Also, node attribute
data from [5], which can be programmatically and dynamically
retrieved, is used to supplement initial URI/DOI attributes and
provide immediately useful tooltip-related metadata.

B. Milestones

Here we itemize both finished and ongoing milestones for
Bewilder (note to readers: these milestones have been revised
since our proposal to more accurately reflect the current
development pathway):

1) Add support for importing URIs/DOIs: We can get
nested URI/DOI data from any dragged-in .webloc,
.url, or HTML file, as a JSON object within JavaScript
(we have also developed a file “dropzone” to make this
step easier). For each URI/DOI, we add a JavaScript
object to the underlying “global” data state, and render
a prototype vis item for each JavaScript object in within
that state (began October 19th, revised October 30th, and
finished November 10th: approximately 20-25 hours).

2) Create the radial vis idiom: We can render a radial
force-directed graph layout with a partial hierarchy, and
set node radii based on whether they are leaves or not
(described in more detail above). We still need to add
some of the drag-and-drop interactivity (especially to
enter the annotation view), fine-tune some force-directed
graph parameters (to prevent unwanted and/or distrac-
tion motion), and add tooltip support. Some stylistic
changes are likely to emerge as well, but are not a
priority (began November 1st, concurrently with the
third milestone, and is ongoing: approximately 30-40
hours so far).

3) Add features: annotate/aggregate/arrange/etc.: We
can enter a prototype annotation view container when
a node is clicked, but still need to update the underlying
global data state when the users exits the view (note
to readers: this view is currently undergoing revision).
Also, for annotation, we need to allow users to add
custom attribute fields to the JavaScript object corre-
sponding to each vis item. While we are able to show a
node’s title attribute to users when they hover over
the node, we also want users to see the neighbouring
node text previews described above. Lastly, if there is
time, we will develop the “smart defaults” and “chronol-
ogy” features (began November 1st, concurrently with
the second milestone, and is ongoing: approximately 10
hours so far).

C. Results

TBD

V. DISCUSSION & FUTURE WORK

TBD

VI. CONCLUSIONS

TBD

ACKNOWLEDGMENTS

TBD

REFERENCES

[1] S. Fast, “Introduction to the Zettelkasten Method,” zettelkasten.de, 27-
Oct-2020. [Online.] Available: https://zettelkasten.de/introduction/ [Ac-
cessed: 16-Nov-2020.]

[2] R. Nave, “HyperPhysics Concepts,” HyperPhysics. Available:
http://hyperphysics.phy-astr.gsu.edu/hbase/index.html [Accessed:
17-Nov-2020.]

[3] Pocket. (2007). Mozilla Corporation. Available: https://getpocket.com
[4] Zotero. (2006). Roy Rosenzweig Center for History and New Media.

Available: https://www.zotero.org
[5] Open Graph Protocol. (2010). Facebook. Available: https://ogp.me
[6] A. Singhal, “Introducing the Knowledge Graph: things,

not strings,” The Keyword, 2012. [Online.] Available:
https://blog.google/products/search/introducing-knowledge-graph-
things-not/ [Accessed: 17-Nov-2020.]

[7] G. King, “The Dataverse Project,” Dataverse. Available:
https://dataverse.org [Accessed: 18-Nov-2020.]

[8] S. Chaudoin, J. N. Shapiro, D. Tingley, “Revolutionizing Teaching
and Research with a Structured Debate Platform,” working paper,
Harvard University, Cambridge, MA, USA, 2017. [Online.] Avail-
able: https://scholar.harvard.edu/files/dtingley/files/structureddebate.pdf
[Accessed: 17-Nov-2020.]

[9] S. Fabbri, E. Hernandes, A. di thommazo, A. Belgamo, A. Zamboni, C.
Silva, “Managing Literature reviews information through visualization,”
in ICEIS 2012 - Proceedings of the 14th International Conference
on Enterprise Information Systems, 2012. [Online.] Available:
https://pdfs.semanticscholar.org/e5fb/4d8f9207dbec71a1b60115230e70add1b2ab.pdf
[Accessed: 17-Nov-2020.]

[10] C. Collins, S. Carpendale, G. Penn, “DocuBurst: Visualizing Document
Content using Language Structure,” Eurographics/IEEE-VGTC
Symposium on Visualization 2009, 2009. [Online.] Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.7051rep=rep1type=pdf
[Accessed: 18-Nov-2020.]

[11] J. Stasko, R. Catrambone, M. Guzdial, K. McDonald,
“An evaluation of space-filling information visualizations
for depicting hierarchical structures,” International Journal
of Human-Computer Studies, 2000. [Online.] Available:
https://www.cc.gatech.edu/ john.stasko/papers/ijhcs00.pdf [Accessed:
18-Nov-2020.]

[12] The Archive. (2017). Available: https://zettelkasten.de/the-archive/
[13] Roam. (2019). Roam Research. Available: https://roamresearch.com
[14] TiddlyWiki. (2004). UnaMesa Association. Available:

https://tiddlywiki.com/
[15] Raindrop.io. (2013). Available: https://raindrop.io/


