
Bewilder: Handling Web Resource Complexity in
Online Learning and Research

Eric Easthope*

Department of Computer Science, University of British Columbia

ABSTRACT

Bewilder is an online tool for annotating, re-arranging, and con-
necting web links in a partially hierarchical way based on intrinsic
and retrieved web link metadata. Bewilder makes saved web link
metadata editable, and derives connections from web link metadata
similarities. Connections are emphasized through various default or
user-specified undirected and directed visual marks, and identified
through user interactions. Users can also download modified web
link metadata.

Index Terms: Human-centered computing—Visualization—
Visualization techniques—Graph drawings; Human-centered
computing—Visualization—Visualization design and evaluation
methods; Human-centered computing—Human computer interac-
tion (HCI)—Interaction paradigms—Web-based interaction;

1 INTRODUCTION

Organizing web links like Uniform Resource Identifiers (URIs), Uni-
form Resource Locators (URLs, a subset of URIs), and Document
Object Identifiers (DOIs), which is often done within browser-based
folders, is still a visually cluttered and awkward user experience.
The alternative, to save and archive tabs offline, again usually within
folders, is arguably no more effective. Given many web items, the
amount of manual categorization a user must do quickly becomes
overwhelming. Also, there is no recall for why, or even when web
links have been saved in the order they have. In the context of saving
too many in-browser tabs, this accumulation of unordered web items
has sometimes been colloquially called “tab overload”, or more
evocatively “tab overload hell.”

Many in-browser and standalone bookmark and resource man-
agers put heavy emphasis on users to manually annotate and arrange
their own content without much automation. Some newer in-browser
bookmark features, like “tab grouping,” which lets a user arbitrar-
ily aggregate tabs, do help users become more organized, but are
often in effect just different views of folders or other tree-like data
structures.

The complexity of these tasks increases further if a user also
wants to organize and connect common web URLs, such as those
stored by tabs, to other URI/DOI-based resources such as arXiv pa-
pers, for example the DOI arXiv:xxxx.xxxx, which corresponds
to the URL https://arxiv.org/abs/xxxx.xxxx, and also gov-
ernment information. A user may also wish to add notes and other
annotations to web link metadata to recall meaningful information
later about why they have saved web links in the order they are in,
and how the web links are connected. Two key visual challenges
arise:

1. How do we make it visually and cognitively easier to collect,
review, and share web links in a number of different contexts?

*e-mail: eric.easthope@me.com

2. How do we visualize these collections at scale?

Bewilder is a software tool that gives users a way to overview,
annotate, and arrange collected web items in a way that retains why
and when we are saving them, and how they are connected to other
resources. This tool replaces tab-based overload with interactive
visualizations of saved web links and their connections through
similarities in their metadata. Bewilder also generates portable
representations of how these URL-like resources are related to each
other to facilitate and support large-scale browser-heavy research,
learning, journalism, and so on. Our design of Bewilder is rooted
in a desire to give users more control over web link and research
article collections, as well as a way to modify, explore, and enjoy
automatically generated arrangements of them.

1.1 Personal Expertise
How to construct effective representations of connected web link
and scraped webpage data, and how these representations could
support learning and research, has been an intermittent interest over
the past few years, but without much external feedback or expert
knowledge. Previous efforts focused more on the programmatic
retrieval and processing of online content, but not so much the visu-
alization of this content, nor the integration of other user-collected
data. In preparation for this work, we have engaged with learners
and researchers directly to learn about what tools they currently use
to archive and retrieve online content, and some the problems they
encounter within their online workflows.

We have also prototyped various software tools in the past using
D3.js with the broader intent to support our own data-driven work
and research. Some of these previous developments also centred on
the problem of digital notetaking and how to connect, share, and
retrieve learning resources without making full copies of them.

2 RELATED WORK

Web link archiving and annotation have been addressed by numerous
commercial software tools. There are many bookmark managers
like Raindrop.io [12], Pocket [11], and Dropmark [14], amongst
others, and many of them also have sharing capabilities. Zotero [17]
is popular too, particularly for managing complex research-driven
bibliographies.

Zettelkasten [6] is a knowledge management system that was
popularized by sociologist Niklas Luhmann that regards physical
collections of notes as hyperlinked documents. A software tool
called The Archive [21] makes this system digital, and there are
other software derivatives such as Roam [16], TiddlyWiki [23], and
more recently Obsidian [15]. Notes taken within these tools can
also include web links. Also, for research there is StArt [4], a
systematic literature review and mapping tool, which also produces
links between large numbers of content-rich documents.

In terms of large-scale online collections, there is the Open Graph
Protocol [5], the Google Knowledge Graph [19], as well as the Data-
verse Project [10]. The Open Graph Protocol turns web pages into
rich data objects in a social and sharing context through attributes
such as website titles, types, URLs, and images, as well as other
optional metadata. The Google Knowledge Graph is a database of



Figure 1: A radial hierarchical view in Docuburst [3].

collected information used to enhance search results. The Dataverse
Project provides open source and shareable collections of research
data. The existence of these collections seems to reflect a public
desire for interlinked and metadata-rich web content. Also, Tumpa
and Masroor Ali have shown that document concept hierarchies can
be derived from structures similar to the Google Knowledge Graph
[22].

In terms of visualizing connections between interlinked web con-
tent, the “discussion topology” view in Kialo [2], shown in Fig. 4, is
an example of visualizing a radial tree-like topology. In particular,
Kialo visualizes hierarchies of arguments between participants on a
topic.

Radial visualizations like these are also seen in Docuburst [3],
which hierarchically visualizes document content based on language,
as well as in a literature review on visualizing ontologies [18], which
discusses the utility of numerous hierarchical radial layouts for rep-
resenting ordered relationships between items. Docuburst is shown
in Fig. 1. Many of these visualizations seem to be derived from
the Sunburst radial visualization technique developed in 2000 by
Stasko et al., demonstrating its applicability to a number of diverse
problem domains. Stasko et al. found that participants preferred
Sunburst views over rectangular treemaps, which are also used to
display hierarchical data, and that participants felt that Sunburst
views conveyed structures and hierarchies better [20]. See Fig. 2 for
a direct comparison of a rectangular treemap and Sunburst.

GrouseFlocks [1], shown in Fig. 3, is another example of visual-
izing tree-like hierarchies derived from graphs. GrouseFlocks uses
containment within concentric circles to represent these hierarchies.

Friedrich and Schreiber, as well as North and Woodhull, have
also explored layouts for hierarchical graphs to account for nodes
of arbitrary sizes arranged upon multiple hierarchical levels [7, 13].
Finally, Hong and Nikolov have explored hierarchical graph layouts
in three dimensions [9].

Something that underlies many of these online learning and re-

Figure 2: Comparison of rectangular treemap and Sunburst views of
a file hierarchy [20].

Figure 3: Concentric circles show hierarchy through containment in
GrouseFlocks [1].

search tools is a lack of user and data interactivity, and often a lack
of visualization entirely. In particular, the underlying topologies of
the Open Graph Protocol and the Google Knowledge Graph could
reveal interesting connections if they were visible. However, neither
dataset is readily accessible to the public, let alone conveniently
available to end users. Data that is hosted by the Dataverse Project is
publicly accessible, but there is still a lack of dedicated visualization
tools.

Another pitfall of many of these derived software tools and vi-
sualizations, such as those developed for Zettelkasten, is that users
cannot navigate nor edit hierarchical content directly. These tools
often make users move between multiple user interface (UI) views.
For example, the Kialo UI makes users contribute arguments in-
directly through text-based subpages, shown in Fig. 5, instead of
directly through the “discussion topology” view. This adds unnec-
essary cognitive load by requiring users to navigate through these
nested text-based subpages.

Overall, we think that gaps such as these in user and data in-
teractivity remove user freedom to do more important underlying
tasks, such as recognizing and even acting upon meaningful con-
nections between items. We also think that users should be able to
impose their own orderings on collections to reinterpret and better
understand them in a personal way.

3 DATA

To give users this control over collections of web links and research
articles, especially to modify, arrange, and explore details of these
collections, Bewilder unifies a number of often disparate forms of
hyperlinked online web content. This web content is frequently
saved as .webloc, .url, and HTML (Hypertext Markup Language)
files. Both .webloc and .url files store a single URL. Many mod-
ern web browsers also provide a bookmark export feature to produce
HTML-based archives of web links, and often store both web URLs



Figure 4: The “discussion topology” view in Kialo [2].

Figure 5: A text-based subpage to contribute arguments to Kialo [2].

and titles of individual webpages. These exported bookmarks are
structured as nested hierarchies of web links, where HTML headers,
subheaders, and so on, represent user-customized bookmark folders.

All of these file formats, that is .webloc, .url, and HTML, can
be unified as nested JavaScript Object Notation (JSON) data. Also,
we can scrape webpage metadata such as social and sharing data
using the Open Graph Protocol. Some of this metadata is shown
in Fig. 6. Scraping this metadata gives us programmatic access to
titles, types, such as video.movie, images associated to each web
link, and more. Many DOIs are also directly associable to specific
URLs, such as the arXiv paper example before, and can therefore be
represented within JSON.

Once we have these aggregate collections of user-provided web
links from HTML, .url, or otherwise, combined with additional
social and sharing content from the Open Graph Protocol, we can
make simple comparisons of URLs, timestamps, user-specified cate-
gories, and more, to derive a JSON object containing node and link
structures, and their attributes. Here, nodes represent web items, and
links represent similarities in their metadata.

Each of these nodes contains its own associated metadata, and
this metadata is a sequence of key-value pairs for each node attribute,
such as title, url, categories, notes, etc. In application, this
sequence of key-value pairs forms a JavaScript object that can be
nested and referenced within other JavaScript objects. This data
structure makes it easy to identify a node by its unique identifier, and
modify its metadata by mutating key-value pairs. Also, since web
links are often nested within subheaders in the conventional HTML
bookmark file format, each node also contains a level attribute to
represent hierarchical ordering.

Figure 6: Sample of node metadata retrieved from the Open Graph
Protocol [5], and links derived from similar node metadata.

Links, which are also sequences of key-value pairs specifying
which two nodes they connect, as well as their directionality, can
be created or updated if metadata similarities are found between
nodes. More connections can be made if there are similarities in the
retrieved Open Graph Protocol metadata of two nodes.

These data representations, coupled with the task abstraction that
follows, define the outcomes for Bewilder.

4 ABSTRACTION

Bewilder is designed around the idea of “user stories,” which are
generalizations derived from discussions and occasional but brief
interactions had with various students, researchers, and other learn-
ers and information foragers outside of the academic community.
Discussions usually involved comparisons of personal learning ap-
proaches and/or what media people used for their notetaking and
research. One graduate student provided a sample of one hour of
their online research notes, which contained more than 70 web links
in between loosely strewn tags, images, and comments. We also have
a number of personal bookmark collections exported as HTML from
the Google Chrome and Safari web browsers, as well as bookmarks
from Raindrop.io [12], which span a few years of archiving.

To support collections like these, Bewilder produces graphically
scalable overviews for up to one hundred or more annotated and
interdependent node-like web items. Bewilder also exposes web
link metadata, such as the titles, types, and images mentioned, and
lets users annotate nodes through lists of categories, and hierarchi-
cal attributes, to derive new dependencies between web items and
accordingly new overall web collection topologies.

Each user story that we define briefly describes a practical use
case for Bewilder:



1. “As a student I want to be able to quickly aggregate and group
web links by their similarities so that I can solve resource-
heavy assignments faster.”

2. “As a researcher I want to be able to re-arrange and annotate
web links so that I can take notes on a per-link basis during
literature search.”

3. “As a journalist I want to be able to make directed and perhaps
causal ties between web links so that I can trace through the
events leading up to a breaking story.”

4. “As a self-directed learner I want to be able to create and
annotate web links with traceback so that I can recall later
how I found specific information.”

All four users are trying to derive tree or graph-like data from
individual web items. Recall that web items are represented by nodes,
and their connections, derived from similarities in node metadata,
for example similar categorical types or overlapping categories, are
represented by links. Hierarchical attributes can be used to derive a
directed graph representation of these web items.

User (1) takes this directed node-link data, and combines it with
categorical node attributes, either annotated by the user or retrieved
from Open Graph Protocol [5] metadata, to derive a new graph
topology by adding links. These links indicate dependencies, in
particular similarities, of attributes within the graph. The user can
then reduce this graph by aggregation based on these dependencies.

User (2), like User (1), annotates nodes within a graph to add cat-
egorical attributes to produce new node-to-node dependencies. User
(2) can then encode new graph arrangements, ordered or otherwise,
to identify features and/or outliers.

Users (3) and (4) perform mutually similar tasks. However, unlike
Users (1) and (2), these users produce and arrange a directed graph
topology by adding many nodes, then adding categorical attributes
to nodes to derive dependencies, which produces links, and finally
reordering these nodes based on the order in which they are added,
which is derived from a datetime attribute or otherwise.

These user scenarios inform the functional design of Bewilder.

5 SOLUTION

Bewilder combines a radial partially ordered hierarchy, shown in
Fig. 8 as annuli, each with a subsequently larger radius, and a force-
directed node-link view, to create a sense of interdependence and
hierarchy between web items, which are nodes. Each annulus rep-
resents a different level attribute value and the largest annulus
corresponds to the maximum level attribute value amongst the web
items shown. Additional or fewer annuli are automatically rendered
by increasing or reducing this maximum value, respectively. Also,
to emphasize each level, every annulus is coloured using an inter-
polated greyscale colour map. These particular greyscale values are
chosen heuristically.

There are three buttons in the Bewilder UI, which are also shown
in Fig. 8:

• The leftmost button toggles “default connections,”
which if activated, as it is by default, creates links
marked by dashed lines between any two nodes if
their base URL is identical. To clarify, the base URL
of https://example.com/subdirectory is simply
https://example.com. See Fig. 11 for an example of
these “default connections.” In Discussion & Future Work we
discuss other possibilities for this control.

• The centermost button downloads the current JavaScript data
object as a minified JSON file, meaning that all whitespace is
removed.

Figure 7: D3.js-based purple-blue-green colour scale for nodes from
d3-scale-chromatic.

• The rightmost button toggles “chronology,” which is currently
disabled. In Discussion & Future Work we discuss a possible
development direction for this control.

Users can add web links by dragging in and dropping .webloc,
.url, and HTML bookmark files from their file system. Upon
dropping the file, Bewilder loads it, parses its contents, retrieves
scraped Open Graph Protocol metadata, and produces a JSON-like
data structure as a JavaScript object. HTML files in particular are
parsed as JSON based on the nesting of web links within bookmark
folders, which is expressed in HTML as web links under one or
more subheaders. Newly added nodes are assigned a level attribute
value by default, namely an integer, that corresponds to the outermost
annulus.

From this JavaScript data object, links are automatically derived
from similar node metadata attributes, as shown in Fig. 6. In particu-
lar, Bewilder creates undirected links if two nodes have at least one
category in common with respect to the categories attribute of
each node, or a directed link if one node is specified as a “source” of
another node. Doing so produces tooltip-compatible information for
every web item based on its metadata and also its interdependencies
with other web items.

Nodes are shown as coloured circular marks using an interpolated
purple-blue-green colour map, shown in Fig. 7, where the colour of
each node is determined linearly from its level attribute value with
reference to the zeroth level, that is the centre, which corresponds
to green. Nodes further from the centre are then coloured more
blue, and then more purple. The choice of three colours is to better
emphasize perceptual differences between intermediate levels with-
out going further and using rainbow colour maps. If the maximum
level attribute value changes, all nodes are re-coloured so that the
colour of nodes at the inner and outermost annuli remain fixed.

Where nodes are placed on the radial hierarchy is not strictly
enforced, and any node can be dragged and dropped into another an-
nulus. Dragging a node to another level updates the level attribute
of that node.

If a node is specified as the “source” of another node, its radius is
increased. This increased radius emphasizes connected or “central”
nodes within the hierarchy. These are nodes that are not connected
to “targets” or do not appear within sources attribute list of any
other node. Technically speaking, these nodes without “targets” are
called leaves.

Three text components appear if the cursor is placed, that is
hovered, over a node. The left text component displays the titles
of “source” nodes connected to the hovered over node, in particular
the nodes listed in sources, and the right text component displays
the titles of its connected “target” nodes. Each node is identified
in sources with a Universally Unique Identifier (UUID), which is
also its id attribute. The title of the hovered-over node, as well as its
associated categories and notes attributes as shown in Fig. 11,
are displayed below the radial view.

These directed connections between nodes are indicated by in-
coming and outgoing arrows in the graph view, where incoming
arrows indicate “sources” and outgoing arrows indicate “targets.”
Once two nodes are connected by a categorical or directed link,
any “default” links are replaced, giving categorical and directed
links some precedence, as they are user-specified or derived from
bookmark folder hierarchies.

Clicking and holding a node for a moment reveals an annotation
view, shown in Fig. 9, which is a semi-opaque overlay on top of the



primary radial and graph view. The annotation view displays and al-
lows a user to see or modify node attributes, such as its categories,
which result in new undirected links if “default connections” is tog-
gled, its sources, which results in new directed links, or its notes.
The choice of making the annotation view semi-opaque is to allow
users to retain a sense of visual context, while still focusing their
attention on modifying node-specific attributes. Also, changes to the
categories or sources attributes of a node which produce new
links are often immediately rendered, so some opacity gives us vi-
sual feedback when the underlying graph changes. Clicking outside
the annotation view hides it and returns the user to the primary view.

5.1 Implementation
Bewilder is written in JavaScript and hosted online at
www.bewilder.me with free hosting from Vercel. Vercel provides a
minimal back-end for scraping webpage Open Graph Protocol meta-
data, front-end hosting for the Bewilder UI, and enables continuous
deployment from GitHub by automatically updating Bewilder when
new production versions are released. Accordingly, source files for
Bewilder are version-controlled and hosted in a private repository
on GitHub.

All visualizations are also written in JavaScript using D3.js and
the React.js framework, and some UI elements are server-side ren-
dered through Next.js. Next.js renders Bewilder as a single-page
application. D3.js is used for rendering the radial and force-directed
graph view elements, for overall data manipulation, and for mod-
ifying the appearance of some functional UI elements such as the
hover-activated text previews. React.js is used for UI layout and to
develop component-based views. This view component modularity
greatly assists with debugging and troubleshooting, and promotes
code reusability. Redux is also used to manage UI-related state.

We considered using TypeScript to add simple checks for match-
ing data types, and to catch and prevent unexpected data handling
errors while importing web links, but using TypeScript did not seem
to be necessary at this stage as we had sufficient checks for file exten-
sions during file loading. We were also borrowing some personally
authored code to get URLs from imported web link files. However,
eventually this code was replaced to support asynchronous Open
Graph Protocol metadata retrieval and multi-file loading.

5.2 Milestones
Here we summarize completed milestones for Bewilder, as well as
the estimated time to complete each milestone:

1. Add a way to import and render web links and retrieve
web link metadata: Get potentially nested URLs from any
dragged-in .webloc, .url, or HTML file, as a JSON object
within JavaScript. Make a “dropzone” component to detect
file drag and drop within the browser window. For each web
item, initialize a node-like JavaScript object, and populate its
attributes with a UUID, retrieved and scraped Open Graph
Protocol metadata, an initial level, initial rendering positions,
or otherwise. Render a trivial HTML element for each node.
Began October 19th, revised October 30th, and completed
November 10th. Some revisions to uniquely identify nodes with
UUIDs, add support for multi-file imports, add adding support
for downloading the JavaScript data object as JSON, were
made in December. Approximately 28 hours.

2. Create radial and graph views: Render a radial force-
directed graph layout with a partially ordered hierarchy, and
set node radii based on whether they are leaves or not, which
is described in more detail above. Set node colours. Add
drag-and-drop interactivity to place nodes within different an-
nuli. Add a way to enter the annotation view. Fine-tune force-
directed graph parameters to prevent rendering “blowouts” or
distracting motions. Add colour schemes and link marks to

radial and graph views. Began November 1st, concurrently
with the third milestone, and completed December 8th. Later
contributions and revisions centred on bug fixes, for example
the graph state being duplicated, and also making “source”
nodes larger when they have dependent nodes, adding link
directionality based on sources, tuning link length to cluster
nodes, adding undirected connections for categories, and mak-
ing default links have dashed lines. Approximately 66 hours.

3. Add features: annotate, arrange, connect, etc.: Add a node
hovering text component or tooltip feature, especially for the
title attribute of each node. Show annotation view when
a node is held for a moment. For each node, add a way to
edit categorical and directed node and link attributes, respec-
tively, through the annotation view. Update nodes and links
when categories or sources change. Add “default connections”
control. Began November 1st, concurrently with the second
milestone, and completed December 8th. Later contributions
and revisions centred on bug fixes, for example re-render is-
sues when switching views, and also replacing a tree-like view
for neighbouring “sources” and “targets” with a tooltip-like
text component, adding support for user-editable notes and
categories attributes, adding “default connections” for sim-
ilar base URLs, adding a sources list to the annotation view,
and making changes in the annotation view automatically re-
render the graph view. Approximately 24 hours.

4. Prepare presentation, code, and report: (as described). Be-
gan December 6th, and completed December 14th. Approxi-
mately 24 hours for the video, 4 hours of code refactoring, and
36 hours for the report.

5.3 Results
To demonstrate Bewilder, we can return to needs of User (2): to
annotate, re-arrange, and add notes to many interdependent web
items. With a few modifications this use case scenario also describes
the needs of Users (1), (3), and (4).

We suppose that this student or researcher has a collection of
web links, either exported as an HTML bookmark file, or stored
as tabs saved as multiple .webloc or .url files. The user drags
one of these files directly into the browser window, and a message
appears to indicate that the browser recognizes a file dragging event.
This message is shown in Fig. 10. As mentioned, dragging in a file
produces a JavaScript data object containing nodes, with metadata
as attributes, including scraped Open Graph Protocol metadata, and
links, including ones derived as “default connections,” which are
rendered as a force-directed graph.

The user can hover over any node to see a text display of the
titles of nodes that are connected to it. As mentioned, on the left
are “source” nodes, and on the right are “target” nodes. The title
of the hovered-over node and a subset of its editable metadata, in
particular categories and notes, are displayed below the radial
view.

Since the node hierarchy is not strictly enforced, the user can
freely change the level attribute of each node by simply dragging
and dropping it into a different annulus. Doing so updates the
underlying JavaScript data object accordingly. The user may, for
example, place a web item that marks the beginning of some research
direction in the centre of the radial view to emphasize its centrality,
or to indicate that it is the “origin” for something. Other web items
can then be re-arranged and placed in reference to this central node.
Of course, the user may find it more evocative to indicate the end
of some research direction with the centre, and precursors to this
endpoint in higher and higher hierarchical levels. This interpretation
is feasible too.

To annotate a web item, the user clicks and holds a node for a
moment, which reveals the annotation view, shown in Fig. 9. The



Figure 8: Radial hierarchy and force-directed graph view in Bewilder, showing “default connections,” undirected links derived from node categories
attributes, and directed links derived from node sources attributes. Controls for toggling “defaults connections,” downloading the JavaScript data
object as JSON, and toggling “chronology” (disabled), are also shown.

Figure 9: Annotation view in Bewilder.

level attribute of this node can be manually changed here, and
brief notes can be added. Also, a list of categories, with categories
separated by commas, can be modified, and “sources”, a list of the
other web items, can be toggled on or off to produce directed links
between nodes. This way, links point from “sources” to “targets.”
Toggling other nodes as sources also updates the sources attribute
of the node being annotated. These links are derived automatically
as in Fig. 8 when categories are matched between nodes, or their
sources change.

Figure 10: Bewilder recognizing a file dragging event.

The user can then reiterate this process to add further and further
complexity. By toggling “default connections,” the user can also
identify web items without annotations as disconnected outliers.
One of these outliers is visible in Fig. 8.

If the user wishes to save their changes, they can also down-
load the underlying JavaScript data object as a JSON file, which is
shareable and software portable.



Figure 11: Hovering over or dragging a node reveals its title, its
“source” titles, its “target” titles, its categories, and its notes attribute.

6 DISCUSSION & FUTURE WORK

Having a tool that can retrieve, modify, and export both web item
metadata and derived connections between web items means that
another user can receive, overview, and even add their own content to
a readily shareable and well-structured web link collection. Bewilder
also makes connections between web items explicit, and therefore
adds valuable higher-order structure to any web link collection.
These connections, as they are able to be undirected, directed, or
defaults, emphasize different relationships between node metadata,
which are unattainable with conventional in-browser tabs.

There are some features that were considered and prototyped
during development, but were ultimately deemed unnecessary or
removed altogether:

• We initially considered using a multi-coloured matrix view as
the primary graphic, with node hovering revealing a “local”
graph topology composed of the “source” and “target” nodes
in Bewilder. However, we decided to emphasize the graph
topology since many of these datasets start off quite small. We
are in control of the number of the links, and therefore can
avoid scenarios where the number of links greatly exceeds
the number of nodes, which would motivate a matrix-like
view. Matrix views also seemed less readable to new users.
Moreover, an investigation by Ghoniem et al. found that node-
link views are more effective for some tasks than matrix views
if the graphs involved are small [8].

• Gradients of link opacity were tried in place of arrows to define
link directions. This did reveal a number of bugs in how we
generated links for “default connections,” namely that “sources”
got mixed up with “targets.” The gradients were evocative
and had a pleasant aesthetic, but were also computationally
intensive to render.

• We tried adding a radial force to set node positions instead of
fixing node positions within annuli. This did not work well and
created a lot of unwanted motion and graph instability. Though,
adding a radial force at the edge of the window seemed to
prevent some node overlap. Still, we think that fixing node po-
sitions within annuli more effectively communicates a partially
ordered hierarchy.

• Link tooltips and annotation, such as for link directionality,
were considered. We determined that in denser graphs it would
be too difficult to accurately interact with specific links.

• We considered de-emphasizing disconnected nodes by decreas-
ing their opacity, to signify dissimilarity in their metadata to
other nodes. However, we decided that it was not meaningful
enough to distinguish outliers in this way.

• We prototyped a feature where hovering over an annulus would
reveal the titles of all nodes with the same level attribute.
This also did not seem meaningful enough since the level at-
tributes are justified by the user and are not intrinsic to specific
web links.

There are also a number of visualizations features that remain
incomplete or we think deserve attention in future work. Some
of these intended features, as they fall under UI development, are
scoped outside of this paper. These UI-based features are italicized
here:

• The “default connections” feature should derive connections
from retrieved Open Graph Protocol metadata, instead of just
comparisons of base URLs. Since this metadata varies greatly
between webpages, it is more challenging to do this than sim-
ply making keyword comparisons. Also, creating connections
based on web links sharing base URLs can sometimes result
in unmanageably complex graphs.

• Given our task descriptions, Bewilder should produce
overviews for as many as hundreds or more annotated and
interlinked web items. This means there is more work to be
done to ensure that graphs with many more links than nodes
do not become unreadable nor unusable, as seen in Fig. 12.

• In the case of more complex graphs, more force constraints
should prevent unwanted link crossings. Aggregating links
could also be used to de-emphasize link quantity but still em-
phasize connections between nodes. Reducing graph sizes by
aggregating nodes with sufficiently similar metadata could also
improve graph readability and ease of dragging multiple nodes
between hierarchical levels.

• To satisfy Users (3) and (4), a “chronology” feature should at
least partially enforce node level attributes based on when
their corresponding web links are dragged into Bewilder. This
would require some partitioning of timestamps into a finite
number of possible level attribute values, where the first web
link added is either placed at the centre or furthermost annulus,
and the most recently added web link is placed opposite to the
first.

• Users should be able to load a previously exported JSON file
with Bewilder, in order to continue working on a saved graph.

• It should be easier or at least more obvious how to exit the
annotation view, and users should be given multiple ways to
do so. For example, a user could press a “×” symbol in one
of the view corners.

• The annotation view should better emphasize which metadata,
such as the categories attribute, is being actively used to
generate links.

One downside of exporting the entire JavaScript data object as
JSON is that this JSON file requires more file space than many
HTML, .webloc, or .url files. However, we think this is less of
a pressing issue with increasing file storage capabilities on most
personal and workplace computers.

Finally, a last-minute 1-person user study with Bewilder, which
was accessed through Google Chrome, revealed an unexpected use
case. After watching a silent demo video, the user had saved an



Figure 12: Reduced readability when there are too many “defaults
connections” and undirected categories links.

entire webpage as an HTML file, and dragged this file into Bewilder.
Bewilder, albeit not crashing, rendered one node for the webpage,
as well as for every embedded HTML element within it. This
included HTML for ads, all linked by similarities in base URL.
The user also found another webpage that did not consist of HTML
and therefore Bewilder could not retrieve metadata for it. Most
importantly, without guidance the user did not initially interpret
the annuli as a hierarchy. As the use of this hierarchy is primarily
justified by the user, this confusion on their part is expected. Entering
the annotation view by clicking and holding a node for a moment
was also not self-evident from the video demo alone.

Nevertheless, with more guidance, the user was able to understand
use cases for the tool, especially when it was described as a means
to “... visualize a thought process behind collecting resources.” The
user also said that Bewilder seemed useful for “tracing resource
paths followed to get to an answer or [end resource].” Unexpected
use cases like the one mentioned make us look forward to further
user exploration and feedback.

7 CONCLUSION

We have presented Bewilder, an online tool for annotating, re-
arranging, and connecting web links in a partially hierarchical way
based on intrinsic and retrieved web link metadata represented by
a force-directed graph. This tool derives from previous insights
into radial hierarchical views and small graphs, as well as personal
frustrations with existing software tools.

Bewilder makes node metadata editable through an annotation
view, and derives undirected and directed connections from sim-
ilarities in node metadata. Connections are emphasized through
various default or user-specified undirected and directed link marks,
and identified through user click, hold, and drag interactions with
nodes. Users can also download modified web link metadata as a
JSON file. More work remains to be done to fulfill some user story
requirements and the UI development directions described.

ACKNOWLEDGMENTS

I am deeply grateful to Professor James Colliander for his patience,
mentorship, and for giving me the time and space to learn D3.js
when I was an undergraduate at UBC.

REFERENCES

[1] D. Archambault, T. Munzner, and D. Auber. GrouseFlocks: Steer-
able exploration of graph hierarchy space. IEEE Transactions on
Visualization and Computer Graphics, 14(4):900–913, 2008. doi: 10.
1109/TVCG.2008.34

[2] S. Chaudoin, J. N. Shapiro, and D. Tingley. Revolutionizing teaching
and research with a structured debate platform. Working paper, 2017.
Accessed: 2020-12-14.

[3] C. Collins, S. Carpendale, and G. Penn. DocuBurst: Visualizing docu-
ment content using language structure. In Proc. Eurographics/IEEE-
VGTC Symp. Visualization (EuroVis), 28(3):1039–1046, 2009. doi: 10.
1111/j.1467-8659.2009.01439.x

[4] S. Fabbri, E. Hernandes, A. Di Thommazo, A. Belgamo, A. Zamboni,
and C. Silva. Managing literature reviews information through visual-
ization. In Proc. Intl. Conf. Enterprise Information Systems (ICEIS),
2:36–45, 2012.

[5] Facebook, Inc. Open Graph Protocol. https://ogp.me, 2010. Ac-
cessed: 2020-12-14.

[6] S. Fast. Introduction to the Zettelkasten method. Blog, 2020. Accessed:
2020-12-14.

[7] C. Friedrich and F. Schreiber. Flexible layering in hierarchical drawings
with nodes of arbitrary size. In Proc. Australasian Computer Science
Conf. (ACSC), pp. 369–376, 2004.

[8] M. Ghoniem, J. Fekete, and P. Castagliola. A comparison of the
readability of graphs using node-link and matrix-based representations.
In Proc. IEEE Symp. Information Visualization (InfoVis), pp. 17–24,
2004. doi: 10.1109/INFVIS.2004.1

[9] S. Hong and N. Nikolov. Hierarchical layouts of directed graphs in
three dimensions. Lecture Notes in Computer Science, 3843:251–261,
2006. doi: 10.1007/11618058 23

[10] G. King. An introduction to the Dataverse Network as an infrastructure
for data sharing. Sociological Methods and Research, 36:173–199,
2007.

[11] Mozilla Corporation. Pocket. https://getpocket.com, 2007. Ac-
cessed: 2020-12-14.

[12] R. Mussabekov. Raindrop.io. https://raindrop.io, 2013. Ac-
cessed: 2020-12-14.

[13] S. C. North and G. Woodhull. Online hierarchical graph drawing.
Revised Papers from Intl. Symp. on Graph Drawing (GD), pp. 232–246,
2001. doi: 10.1007/3-540-45848-4 19

[14] Oak Studios. Dropmark. https://www.dropmark.com, 2011. Ac-
cessed: 2020-12-14.

[15] Obsidian. Obsidian. https://obsidian.md, 2020. Accessed: 2020-
12-14.

[16] Roam Research. Roam. https://roamresearch.com, 2019. Ac-
cessed: 2020-12-14.

[17] Roy Rosenzweig Center for History and New Media. Zotero. https:
//www.zotero.org, 2006. Accessed: 2020-12-14.

[18] A. Saghafi. Visualizing ontologies – a literature survey. In Proc.
Intl. Conf. Conceptual Structures (ICCS), pp. 204–221, 2016. doi: 10.
1007/978-3-319-40985-6 16

[19] A. Singhal. Introducing the Knowledge Graph: things, not strings.
Blog, 2012. Accessed: 2020-12-14.

[20] J. Stasko, R. Catrambone, M. Guzdial, and K. McDonald. An evalu-
ation of space-filling information visualizations for depicting hierar-
chical structures. Intl. Journal of Human-Computer Studies (IJHCS),
53:663–694, 2000. doi: 10.1006/ijhc.2000.0420

[21] C. Tietze and S. Fast. The Archive. https://zettelkasten.de/
the-archive, 2017. Accessed: 2020-12-14.

[22] S. N. Tumpa and M. Masroor Ali. Document concept hierarchy genera-
tion by extracting semantic tree using knowledge graph. In Proc. IEEE
Intl. WIE Conf. Electrical and Computer Engineering (WIECON-ECE),
pp. 83–86, 2018. doi: 10.1109/WIECON-ECE.2018.8783083

https://ogp.me
https://getpocket.com
https://raindrop.io
https://www.dropmark.com
https://obsidian.md
https://roamresearch.com
https://www.zotero.org
https://www.zotero.org
https://zettelkasten.de/the-archive
https://zettelkasten.de/the-archive


[23] UnaMesa Association. TiddlyWiki. https://tiddlywiki.com,
2004. Accessed: 2020-12-14.

https://tiddlywiki.com

	Introduction
	Personal Expertise

	Related Work
	Data
	Abstraction
	Solution
	Implementation
	Milestones
	Results

	Discussion & Future Work
	Conclusion

