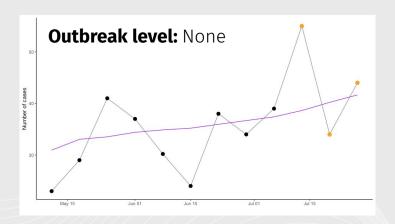
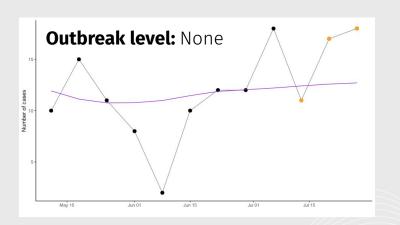

Disease Outbreak Radar: A Tool for Public Health Users

UBC CPSC 547 Project Cloris Feng, Derek Tam, Tae Yoon (Harry) Lee Dec 10, 2020


Challenges in Disease Outbreak Detection



- "A disease outbreak is defined as the occurrence of disease cases in excess of normal expectancy." [World Health Organization]
- Due to complex disease characteristics, it is difficult to define the "norm."
- An automated method has been developed in collaboration with British Columbia Centre for Disease Control to reduce the burden and to help them identify disease outbreaks.

Outbreak level

- Outbreak p-value: the probability of observing the three most recent numbers of cases.
- Outbreak level:
 - High: outbreak p-value <= 0.1%
 - Medium: 0.1% < outbreak p-value <= 1%
 - Low: 1% < outbreak p-value <= 5%
 - None: outbreak p-value > 5%

Motivation

BC CDC is monitoring around **60** diseases in each of the **16** regions of BC. They need to check whether there is an outbreak in 60*16 ~= **800** diseases **weekly**.

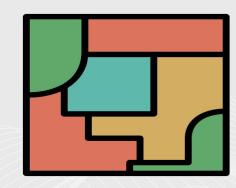
4

WHAT: Multidimensional Table

Publicly available disease count data of the United States was used (Project Tycho).

Attribute name	Attribute type	Levels/range	Description
Disease	Categorical	6	△ Disease name
Week date	Sequential/ ordered	2009-01-04 - 2014-07-27	Start and end dates of a week in which the number of cases is collected (~290 observations)
Region	Categorical	9	US census divisions
Number of cases	Quantitative	0 - 3,140 (integers)	Number of cases of a disease
Number of population	Quantitative	14,469,650 - 62,382,273	Number of population estimated by the US Census in the year of Week date
		Derived attributes	
Rate of cases	Quantitative	0.16 - 1094.90 (per 10,000,000)	Number of cases divided by the number of population
Estimated number of cases	Quantitative	Non-negative real valued	Estimated by the method
Outbreak p-value	Quantitative	0-1 (real-valued)	Probability of observing the 3 most recent numbers of cases based on the method
Outbreak level	Categorical	User-defined	Level of outbreak specified by public health users based on the outbreak p-value

WHY: Search, Analyze, and Compare

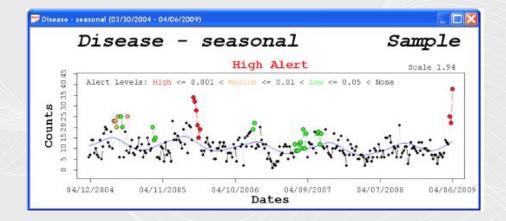


Efficiently **search** for an outbreak in diseases across regions

Task 2

Analyze the trend in the number of cases and estimated number of cases for each disease with an outbreak

Task 3


Compare the outbreak levels across regions for each disease with an outbreak

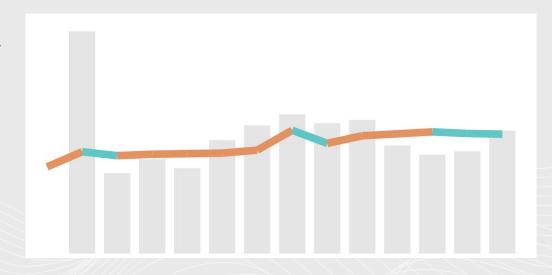
Analysis of COVID Dashboards and Design Guidelines

Analyzed 4 COVID dashboards & 8 design guidelines

Δ

- Learned lessons specific to visualization of case data with geographical context and applied them to our prototype
- Guidelines were used to specifically address Task 2 and Task 3

Recommendation for Task 2


Task 2:

Δ

Analyze trends in the number of cases for a given region and disease

Recommendation:

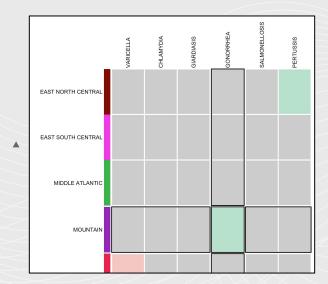
A line-over-bar chart, with gain/loss trend-lines and annotated weeks of interest

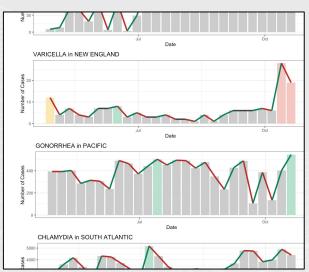
Δ

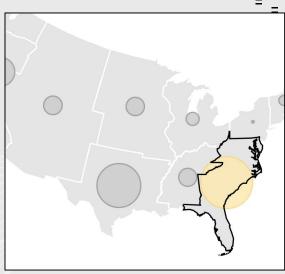
Recommendation for Task 3

• Task 3:

Compare the outbreak risk across regions for each disease


Recommendation:


A combination of bubble map and dot-density map to handle case number complexity



HOW: Implementation Design

Task 1 Task 2 Task 3

Implementation and Demo

- Outbreak detection algorithm was developed by Harry as part of his Master's thesis
 - Algorithm was applied to a subset of Tycho data
- Dashboard was implemented in R
 - Made interactive with the ShinyApp package and plotly
 - Web-hosting through shinyapps.io

Limitations and Next Steps

- Tycho dataset is an adequate but non-ideal proxy for real data
- Dashboard could use additional quality-of-life features
 - Reordering and removal of individual timeseries
 - Region selection via map
- Reporting and export for diseases and regions of interest